Commit | Line | Data |
---|---|---|
493a35bf | 1 | Package: valse |
5ce95f26 | 2 | Title: Variable Selection With Mixture Of Models |
493a35bf BA |
3 | Date: 2016-12-01 |
4 | Version: 0.1-0 | |
f9143bd9 BA |
5 | Description: Two methods are implemented to cluster data with finite mixture |
6 | regression models. Those procedures deal with high-dimensional covariates and | |
7 | responses through a variable selection procedure based on the Lasso estimator. | |
8 | A low-rank constraint could be added, computed for the Lasso-Rank procedure. | |
9 | A collection of models is constructed, varying the level of sparsity and the | |
10 | number of clusters, and a model is selected using a model selection criterion | |
11 | (slope heuristic, BIC or AIC). Details of the procedure are provided in 'Model- | |
12 | based clustering for high-dimensional data. Application to functional data' by | |
13 | Emilie Devijver, published in Advances in Data Analysis and Clustering (2016). | |
ef67d338 | 14 | Author: Benjamin Auder <Benjamin.Auder@math.u-psud.fr> [aut,cre], |
5ce95f26 | 15 | Emilie Devijver <Emilie.Devijver@kuleuven.be> [aut], |
ef67d338 | 16 | Benjamin Goehry <Benjamin.Goehry@math.u-psud.fr> [aut] |
ef67d338 | 17 | Maintainer: Benjamin Auder <Benjamin.Auder@math.u-psud.fr> |
493a35bf | 18 | Depends: |
ef67d338 BA |
19 | R (>= 3.0.0) |
20 | Imports: | |
e3f2fe8a | 21 | MASS, |
19041906 | 22 | parallel |
ef67d338 | 23 | Suggests: |
0eb161e3 BA |
24 | capushe, |
25 | roxygen2, | |
26 | testhat | |
493a35bf | 27 | URL: http://git.auder.net/?p=valse.git |
ef67d338 | 28 | License: MIT + file LICENSE |
f9143bd9 | 29 | RoxygenNote: 5.0.1 |
19041906 | 30 | Collate: |
31 | 'plot.R' | |
32 | 'main.R' | |
33 | 'selectVariables.R' | |
19041906 | 34 | 'constructionModelesLassoRank.R' |
35 | 'constructionModelesLassoMLE.R' | |
36 | 'computeGridLambda.R' | |
37 | 'initSmallEM.R' | |
38 | 'EMGrank.R' | |
39 | 'EMGLLF.R' | |
40 | 'generateXY.R' | |
41 | 'A_NAMESPACE.R' | |
a6b60f91 | 42 | 'plot_valse.R' |