réécriture de selectionTotale.m
[valse.git] / R / selectVariables.R
CommitLineData
e01c9b1f 1#' selectVaribles
2#' It is a function which construct, for a given lambda, the sets of
3#' relevant variables and irrelevant variables.
4#'
5#' @param phiInit an initial estimator for phi (size: p*m*k)
6#' @param rhoInit an initial estimator for rho (size: m*m*k)
7#' @param piInit an initial estimator for pi (size : k)
8#' @param gamInit an initial estimator for gamma
9#' @param mini minimum number of iterations in EM algorithm
10#' @param maxi maximum number of iterations in EM algorithm
11#' @param gamma power in the penalty
12#' @param glambda grid of regularization parameters
13#' @param X matrix of regressors
14#' @param Y matrix of responses
15#' @param thres threshold to consider a coefficient to be equal to 0
16#' @param tau threshold to say that EM algorithm has converged
17#'
18#' @return
19#' @export
20#'
21#' @examples
22selectVariables <- function(phiInit,rhoInit,piInit,gamInit,
23 mini,maxi,gamma,glambda,X,Y,thres,tau){
24
25 dimphi <- dim(phiInit)
26 p <- dimPhi[1]
27 m <- dimPhi[2]
28 k <- dimPhi[3]
29 L <- length(glambda);
30 A1 <- array(0, dim <- c(p,m+1,L))
31 A2 <- array(0, dim <- c(p,m+1,L))
32 Rho <- array(0, dim <- c(m,m,k,L))
33 Pi <- array(0, dim <- c(k,L));
34
35 # For every lambda in gridLambda, comutation of the coefficients
36 for (lambdaIndex in c(1:L)) {
37 Res <- EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,
38 gamma,glambda[lambdaIndex],X,Y,tau);
39 phi <- Res$phi
40 rho <- Res$rho
41 pi <- Res$pi
42
43 # If a coefficient is larger than the threshold, we keep it
44 selectedVariables <- array(0, dim = c(p,m))
45 discardedVariables <- array(0, dim = c(p,m))
46 atLeastOneSelectedVariable <- false
47 for (j in c(1:p)){
48 cpt <- 1
49 cpt2 <-1
50 for (mm in c(1:m)){
51 if (max(abs(phi[j,mm,])) > thres){
52 selectedVariables[j,cpt] <- mm
53 cpt <- cpt+1
54 atLeastOneSelectedVariable <- true
55 } else{
56 discardedVariables[j,cpt2] <- mm
57 cpt2 <- cpt2+1
58 }
59 }
60 }
61
62 # If no coefficients have been selected, we provide the zero matrix
63 # We delete zero coefficients: vec = indices of zero values
64 if atLeastOneSelectedVariable{
65 vec <- c()
66 for (j in c(1:p)){
67 if (selectedVariables(j,1) =! 0){
68 vec <- c(vec,j)
69 }
70 }
71 # Else, we provide the indices of relevant coefficients
72 A1[,1,lambdaIndex] <- c(vec,rep(0,p-length(vec)))
73 A1[1:length(vec),2:(m+1),lambdaIndex] <- selectedVariables[vec,]
74 A2[,1,lambdaIndex] <- 1:p
75 A2[,2:(m+1),lambdaIndex] <- discardedVariables
76 Rho[,,,lambdaIndex] <- rho
77 Pi[,lambdaIndex] <- pi
78 }
79
80 }
81 return(res = list(A1 = A1, A2 = A2 , Rho = Rho, Pi = Pi))
82}