f227455a |
1 | lines(1:15, rep(0,15), col='red') |
2 | N = 300 |
3 | mugamma = c(1,2,3) |
4 | Gamma = matrix(c(5,-0.02,0.01,-0.02,1,0.1,0.01,0.1,1),3,3) |
5 | s2 = 0.01 |
6 | Si = getbasismatrix(seq(0,1,length=15),create.fourier.basis(nbasis = 3)) |
7 | gammai = t(sapply(1:N,FUN = function(i){ |
8 | rmvnorm(1,mugamma,Gamma) |
9 | })) |
10 | Xdata = t(sapply(1:N,FUN = function(i){ |
11 | as.vector(Si%*%gammai[i,])+rnorm(15,0,s2) |
12 | })) |
13 | matplot(t(Xdata),type="l") |
14 | #beta = c(.1,.5,-.3) |
15 | beta = c(1,-3.5,4.5,-2.5) |
16 | pydata = sapply(1:N,FUN=function(i){ |
17 | a = sum(beta*c(1,gammai[i,])) |
18 | return(exp(a)/(1+exp(a))) |
19 | }) |
20 | U = runif(length(pydata)) |
21 | ydata = as.numeric(U<pydata) |
22 | plot(sort(pydata),col=ydata[order(pydata)]+2) |
23 | wi = Si %*% beta[-1] |
24 | plot(wi, type='l') |
25 | lines(1:15,rep(0,15)) |
26 | plot( apply(t(Xdata[ydata==1,]),1,mean)-apply(t(Xdata[ydata==0,]),1,mean),typ="l",lty=1,col="green") |
27 | for (ite in 1:30){ |
28 | print(ite) |
29 | Xdata = t(sapply(1:N,FUN = function(i){ |
30 | as.vector(Si%*%gammai[i,])+rnorm(15,0,s2) |
31 | })) |
32 | #beta = c(.1,.5,-.3) |
33 | beta = c(1,-3.5,4.5,-2.5) |
34 | pydata = sapply(1:N,FUN=function(i){ |
35 | a = sum(beta*c(1,gammai[i,])) |
36 | return(exp(a)/(1+exp(a))) |
37 | }) |
38 | U = runif(length(pydata)) |
39 | ydata = as.numeric(U<pydata) |
40 | lines( apply(t(Xdata[ydata==1,]),1,mean)-apply(t(Xdata[ydata==0,]),1,mean),col="green") |
41 | } |
42 | lines(1:15, rep(0,15), col='red') |
43 | matplot(Xdata) |
44 | matplot(Xdata,type='l') |
45 | matplot(t(Xdata),type='l') |
46 | matplot(apply(Xdata, 2, mean),type='l') |
47 | mean(apply(Xdata, 2, mean)) |
48 | N = 3000 |
49 | mugamma = c(1,2,3) |
50 | Gamma = matrix(c(5,-0.02,0.01,-0.02,1,0.1,0.01,0.1,1),3,3) |
51 | s2 = 0.01 |
52 | Si = getbasismatrix(seq(0,1,length=15),create.fourier.basis(nbasis = 3)) |
53 | gammai = t(sapply(1:N,FUN = function(i){ |
54 | rmvnorm(1,mugamma,Gamma) |
55 | })) |
56 | Xdata = t(sapply(1:N,FUN = function(i){ |
57 | as.vector(Si%*%gammai[i,])+rnorm(15,0,s2) |
58 | })) |
59 | matplot(t(Xdata),type="l") |
60 | #beta = c(.1,.5,-.3) |
61 | beta = c(1,-3.5,4.5,-2.5) |
62 | pydata = sapply(1:N,FUN=function(i){ |
63 | a = sum(beta*c(1,gammai[i,])) |
64 | return(exp(a)/(1+exp(a))) |
65 | }) |
66 | U = runif(length(pydata)) |
67 | ydata = as.numeric(U<pydata) |
68 | plot(sort(pydata),col=ydata[order(pydata)]+2) |
69 | wi = Si %*% beta[-1] |
70 | plot(wi, type='l') |
71 | lines(1:15,rep(0,15)) |
72 | plot( apply(t(Xdata[ydata==1,]),1,mean)-apply(t(Xdata[ydata==0,]),1,mean),typ="l",lty=1,col="green") |
73 | for (ite in 1:30){ |
74 | print(ite) |
75 | Xdata = t(sapply(1:N,FUN = function(i){ |
76 | as.vector(Si%*%gammai[i,])+rnorm(15,0,s2) |
77 | })) |
78 | #beta = c(.1,.5,-.3) |
79 | beta = c(1,-3.5,4.5,-2.5) |
80 | pydata = sapply(1:N,FUN=function(i){ |
81 | a = sum(beta*c(1,gammai[i,])) |
82 | return(exp(a)/(1+exp(a))) |
83 | }) |
84 | U = runif(length(pydata)) |
85 | ydata = as.numeric(U<pydata) |
86 | lines( apply(t(Xdata[ydata==1,]),1,mean)-apply(t(Xdata[ydata==0,]),1,mean),col="green") |
87 | } |
88 | lines(1:15, rep(0,15), col='red') |
89 | Gamma |
90 | Gamma = matrix(c(5,-0.02,0.01,-0.02,5,0.1,0.01,0.1,5),3,3) |
91 | s2 = 0.01 |
92 | Si = getbasismatrix(seq(0,1,length=15),create.fourier.basis(nbasis = 3)) |
93 | gammai = t(sapply(1:N,FUN = function(i){ |
94 | rmvnorm(1,mugamma,Gamma) |
95 | })) |
96 | Xdata = t(sapply(1:N,FUN = function(i){ |
97 | as.vector(Si%*%gammai[i,])+rnorm(15,0,s2) |
98 | })) |
99 | matplot(t(Xdata),type="l") |
100 | #beta = c(.1,.5,-.3) |
101 | plot(sort(sapply(1:N,FUN=function(i) 1/(1+exp((-1)*(resEM$betah[1,ITfinal]+sum(resEM$betah[-1,ITfinal]*resEM$gammahat[i,]))))) )) |
102 | plot(wi, type='l') |
103 | wi = Si %*% beta[-1] |
104 | plot(wi, type='l') |
105 | lines(1:15,rep(0,15)) |
106 | plot( apply(t(Xdata[ydata==1,]),1,mean)-apply(t(Xdata[ydata==0,]),1,mean),typ="l",lty=1,col="green") |
107 | for (ite in 1:30){ |
108 | print(ite) |
109 | Xdata = t(sapply(1:N,FUN = function(i){ |
110 | as.vector(Si%*%gammai[i,])+rnorm(15,0,s2) |
111 | })) |
112 | #beta = c(.1,.5,-.3) |
113 | beta = c(1,-3.5,4.5,-2.5) |
114 | pydata = sapply(1:N,FUN=function(i){ |
115 | a = sum(beta*c(1,gammai[i,])) |
116 | return(exp(a)/(1+exp(a))) |
117 | }) |
118 | U = runif(length(pydata)) |
119 | ydata = as.numeric(U<pydata) |
120 | lines( apply(t(Xdata[ydata==1,]),1,mean)-apply(t(Xdata[ydata==0,]),1,mean),col="green") |
121 | } |
122 | lines(1:15, rep(0,15), col='red') |
123 | N = 200 |
124 | M = 100 |
125 | mugamma = c(1,2,3,2,4,6) |
126 | LGamma = matrix(0,nrow=6,ncol=6) |
127 | LGamma[lower.tri(LGamma,diag=FALSE)] = rnorm(6*5/2,0,0.05) |
128 | LGamma = LGamma + diag(runif(6,0.2,1)) |
129 | Gamma = LGamma%*%t(LGamma) |
130 | s2 = 0.2 |
131 | freq = seq(0,1,length=M) |
132 | intervals = list(12:25,67:89) |
133 | Si = as.matrix(bdiag(getbasismatrix(freq[12:25],create.fourier.basis(nbasis = 3)), getbasismatrix(freq[67:89],create.fourier.basis(nbasis = 3)))) |
134 | gammai = t(sapply(1:N,FUN = function(i){ |
135 | rmvnorm(1,mugamma,Gamma) |
136 | })) |
137 | Xdata = t(sapply(1:N,FUN = function(i){ |
138 | as.vector(Si%*%gammai[i,])+rnorm(nrow(Si),0,s2) |
139 | })) |
140 | xdata = matrix(0,nrow=N,ncol=M) |
141 | xdata[,intervals[[1]] ] = Xdata[,1:14] |
142 | xdata[,intervals[[2]] ] = Xdata[,15:37] |
143 | beta = c(2,0.5,-2,1,0.2,1,-1) |
144 | pydata = sapply(1:N,FUN=function(i){ |
145 | a = sum(beta*c(1,gammai[i,])) |
146 | return(exp(a)/(1+exp(a))) |
147 | }) |
148 | U = runif(length(pydata)) |
149 | ydata = as.numeric(U<pydata) |
150 | plot(sort(pydata),col=ydata[order(pydata)]+1) |
151 | nBasis = c(3,3) |
152 | L = 20 |
153 | eer = rep(0,L) |
154 | for (ell in 1:L){ |
155 | kapp = sample(1:200,0.8*200,replace=FALSE) |
156 | xdata.app = xdata[kapp,] |
157 | ydata.app = ydata[kapp] |
158 | ktest = setdiff(1:200,kapp) |
159 | xdata.test = xdata[ktest,] |
160 | ydata.test = ydata[ktest] |
161 | resEM = EM.Bands.function(ydata,xdata,freq,intervals,nBasis,MCit=1000,25,eps=10^-8,keep=TRUE) |
162 | Yres = Y.predB(xdata.test,freq,intervals,resEM$muh,resEM$Gammah,resEM$s2h,resEM$betah,nBasis=c(3,3)) |
163 | eer[ell] = mean(Yres$Ypred==ydata.test) |
164 | cat("\n", "ell =", ell) |
165 | } |
166 | source('~/Dropbox/projet spectres/algoEM/EMalgorithmBandes.R') |
167 | for (ell in 1:L){ |
168 | kapp = sample(1:200,0.8*200,replace=FALSE) |
169 | xdata.app = xdata[kapp,] |
170 | ydata.app = ydata[kapp] |
171 | ktest = setdiff(1:200,kapp) |
172 | xdata.test = xdata[ktest,] |
173 | ydata.test = ydata[ktest] |
174 | resEM = EM.Bands.function(ydata,xdata,freq,intervals,nBasis,MCit=1000,25,eps=10^-8,keep=TRUE) |
175 | Yres = Y.predB(xdata.test,freq,intervals,resEM$muh,resEM$Gammah,resEM$s2h,resEM$betah,nBasis=c(3,3)) |
176 | eer[ell] = mean(Yres$Ypred==ydata.test) |
177 | cat("\n", "ell =", ell) |
178 | } |
179 | N = 3000 |
180 | mugamma = c(1,2,3) |
181 | Gamma = matrix(c(5,-0.02,0.01,-0.02,5,0.1,0.01,0.1,5),3,3) |
182 | s2 = 0.01 |
183 | Si = getbasismatrix(seq(0,1,length=15),create.fourier.basis(nbasis = 3)) |
184 | gammai = t(sapply(1:N,FUN = function(i){ |
185 | rmvnorm(1,mugamma,Gamma) |
186 | })) |
187 | Xdata = t(sapply(1:N,FUN = function(i){ |
188 | as.vector(Si%*%gammai[i,])+rnorm(15,0,s2) |
189 | })) |
190 | matplot(t(Xdata),type="l") |
191 | #beta = c(.1,.5,-.3) |
192 | beta = c(1,-3.5,4.5,-2.5) |
193 | pydata = sapply(1:N,FUN=function(i){ |
194 | a = sum(beta*c(1,gammai[i,])) |
195 | return(exp(a)/(1+exp(a))) |
196 | }) |
197 | U = runif(length(pydata)) |
198 | ydata = as.numeric(U<pydata) |
199 | plot(sort(pydata),col=ydata[order(pydata)]+2) |
200 | wi = Si %*% beta[-1] |
201 | plot(wi, type='l') |
202 | lines(1:15,rep(0,15)) |
203 | plot( apply(t(Xdata[ydata==1,]),1,mean)-apply(t(Xdata[ydata==0,]),1,mean),typ="l",lty=1,col="green") |
204 | for (ite in 1:30){ |
205 | print(ite) |
206 | Xdata = t(sapply(1:N,FUN = function(i){ |
207 | as.vector(Si%*%gammai[i,])+rnorm(15,0,s2) |
208 | })) |
209 | #beta = c(.1,.5,-.3) |
210 | beta = c(1,-3.5,4.5,-2.5) |
211 | pydata = sapply(1:N,FUN=function(i){ |
212 | a = sum(beta*c(1,gammai[i,])) |
213 | return(exp(a)/(1+exp(a))) |
214 | }) |
215 | U = runif(length(pydata)) |
216 | ydata = as.numeric(U<pydata) |
217 | lines( apply(t(Xdata[ydata==1,]),1,mean)-apply(t(Xdata[ydata==0,]),1,mean),col="green") |
218 | } |
219 | lines(1:15, rep(0,15), col='red') |
220 | N = 3000 |
221 | mugamma = c(1,2,3) |
222 | Gamma = matrix(c(5,-0.02,0.01,-0.02,1,0.1,0.01,0.1,5),3,3) |
223 | s2 = 0.01 |
224 | Si = getbasismatrix(seq(0,1,length=15),create.fourier.basis(nbasis = 3)) |
225 | gammai = t(sapply(1:N,FUN = function(i){ |
226 | rmvnorm(1,mugamma,Gamma) |
227 | })) |
228 | Xdata = t(sapply(1:N,FUN = function(i){ |
229 | as.vector(Si%*%gammai[i,])+rnorm(15,0,s2) |
230 | })) |
231 | matplot(t(Xdata),type="l") |
232 | #beta = c(.1,.5,-.3) |
233 | beta = c(1,-3.5,4.5,-2.5) |
234 | pydata = sapply(1:N,FUN=function(i){ |
235 | a = sum(beta*c(1,gammai[i,])) |
236 | return(exp(a)/(1+exp(a))) |
237 | }) |
238 | U = runif(length(pydata)) |
239 | ydata = as.numeric(U<pydata) |
240 | plot(sort(pydata),col=ydata[order(pydata)]+2) |
241 | # ydata = ydata.noise |
242 | wi = Si %*% beta[-1] |
243 | plot(wi, type='l') |
244 | lines(1:15,rep(0,15)) |
245 | plot( apply(t(Xdata[ydata==1,]),1,mean)-apply(t(Xdata[ydata==0,]),1,mean),typ="l",lty=1,col="green") |
246 | for (ite in 1:30){ |
247 | print(ite) |
248 | Xdata = t(sapply(1:N,FUN = function(i){ |
249 | as.vector(Si%*%gammai[i,])+rnorm(15,0,s2) |
250 | })) |
251 | #beta = c(.1,.5,-.3) |
252 | beta = c(1,-3.5,4.5,-2.5) |
253 | pydata = sapply(1:N,FUN=function(i){ |
254 | a = sum(beta*c(1,gammai[i,])) |
255 | return(exp(a)/(1+exp(a))) |
256 | }) |
257 | U = runif(length(pydata)) |
258 | ydata = as.numeric(U<pydata) |
259 | lines( apply(t(Xdata[ydata==1,]),1,mean)-apply(t(Xdata[ydata==0,]),1,mean),col="green") |
260 | } |
261 | lines(1:15, rep(0,15), col='red') |
262 | matplot(t(Xdata[ydata==1,]),typ="l",lty=1,col="red") |
263 | matplot(t(Xdata[ydata==0,]),typ="l",lty=1,col="black",add=TRUE) |
264 | N = 200 |
265 | M = 100 |
266 | mugamma = c(1,2,3,2,4,6) |
267 | LGamma = matrix(0,nrow=6,ncol=6) |
268 | LGamma[lower.tri(LGamma,diag=FALSE)] = rnorm(6*5/2,0,0.05) |
269 | LGamma = LGamma + diag(runif(6,0.2,1)) |
270 | Gamma = LGamma%*%t(LGamma) |
271 | s2 = 0.2 |
272 | freq = seq(0,1,length=M) |
273 | intervals = list(12:25,67:89) |
274 | Si = as.matrix(bdiag(getbasismatrix(freq[12:25],create.fourier.basis(nbasis = 3)), getbasismatrix(freq[67:89],create.fourier.basis(nbasis = 3)))) |
275 | gammai = t(sapply(1:N,FUN = function(i){ |
276 | rmvnorm(1,mugamma,Gamma) |
277 | })) |
278 | Xdata = t(sapply(1:N,FUN = function(i){ |
279 | as.vector(Si%*%gammai[i,])+rnorm(nrow(Si),0,s2) |
280 | })) |
281 | xdata = matrix(0,nrow=N,ncol=M) |
282 | xdata[,intervals[[1]] ] = Xdata[,1:14] |
283 | xdata[,intervals[[2]] ] = Xdata[,15:37] |
284 | beta = c(2,0.5,-2,1,0.2,1,-1) |
285 | pydata = sapply(1:N,FUN=function(i){ |
286 | a = sum(beta*c(1,gammai[i,])) |
287 | return(exp(a)/(1+exp(a))) |
288 | }) |
289 | U = runif(length(pydata)) |
290 | ydata = as.numeric(U<pydata) |
291 | plot(sort(pydata),col=ydata[order(pydata)]+1) |
292 | nBasis = c(3,3) |
293 | resEM = EM.Bands.function(ydata,xdata,freq,intervals,nBasis,MCit=500,100,eps=10^-8,keep=TRUE) |
294 | source('~/Dropbox/projet spectres/algoEM/EMalgorithmBandes.R') |
295 | resEM = EM.Bands.function(ydata,xdata,freq,intervals,nBasis,MCit=500,100,eps=10^-8,keep=TRUE) |
296 | L = 20 |
297 | eer = rep(0,L) |
298 | for (ell in 1:L){ |
299 | kapp = sample(1:200,0.8*200,replace=FALSE) |
300 | xdata.app = xdata[kapp,] |
301 | ydata.app = ydata[kapp] |
302 | ktest = setdiff(1:200,kapp) |
303 | xdata.test = xdata[ktest,] |
304 | ydata.test = ydata[ktest] |
305 | resEM = EM.Bands.function(ydata,xdata,freq,intervals,nBasis,MCit=1000,25,eps=10^-8,keep=FALSE) |
306 | Yres = Y.predB(xdata.test,freq,intervals,resEM$muh,resEM$Gammah,resEM$s2h,resEM$betah,nBasis=c(3,3)) |
307 | eer[ell] = mean(Yres$Ypred==ydata.test) |
308 | cat("\n", "ell =", ell) |
309 | } |
310 | source('~/Dropbox/projet spectres/algoEM/EMalgorithmBandes.R') |
311 | for (ell in 1:L){ |
312 | kapp = sample(1:200,0.8*200,replace=FALSE) |
313 | xdata.app = xdata[kapp,] |
314 | ydata.app = ydata[kapp] |
315 | ktest = setdiff(1:200,kapp) |
316 | xdata.test = xdata[ktest,] |
317 | ydata.test = ydata[ktest] |
318 | resEM = EM.Bands.function(ydata,xdata,freq,intervals,nBasis,MCit=1000,25,eps=10^-8,keep=FALSE) |
319 | Yres = Y.predB(xdata.test,freq,intervals,resEM$muh,resEM$Gammah,resEM$s2h,resEM$betah,nBasis=c(3,3)) |
320 | eer[ell] = mean(Yres$Ypred==ydata.test) |
321 | cat("\n", "ell =", ell) |
322 | } |
323 | eer |
324 | mean(eer) |
325 | source('~/Dropbox/projet spectres/cluster/EMLiqArtBandeHugues.R') |
326 | library(fda) |
327 | library(Matrix) |
328 | library(mvtnorm) |
329 | source('EMalgorithm.R') |
330 | source('EMLiqArtBandeHugues.R') |
331 | for (nVC in 1:100){ |
332 | EMLiqArtBandeHugues(nVC) |
333 | } |
334 | setwd("~/Dropbox/projet spectres/cluster") |
335 | library(fda) |
336 | library(Matrix) |
337 | library(mvtnorm) |
338 | source('EMalgorithm.R') |
339 | source('EMLiqArtBandeHugues.R') |
340 | for (nVC in 1:100){ |
341 | EMLiqArtBandeHugues(nVC) |
342 | } |
343 | sims= c(63:67,69,71:74,76:85,88:90,93:100) |
344 | #simulation_settings=expand.grid(c(1,2,3,4,5),c(1,2),c(600),c(300)) |
345 | #for (i in 1:nrow(simulation_settings)){ |
346 | aa=cbind(sims,rep(9, each =length(sims))) |
347 | colnames(aa)=c("isim","model") |
348 | write.table(aa,file=paste("SimulationSettings9.txt",sep=""),row.names=FALSE,sep=",") |
349 | setwd("~/Dropbox/WarpMixedModel/warpingMixedModel/SuperComputer") |
350 | write.table(aa,file=paste("SimulationSettings9.txt",sep=""),row.names=FALSE,sep=",") |
351 | sims= 1:100 |
352 | colnames(sims) = "isim" |
353 | sims= 1:100 |
354 | #simulation_settings=expand.grid(c(1,2,3,4,5),c(1,2),c(600),c(300)) |
355 | #for (i in 1:nrow(simulation_settings)){ |
356 | aa=cbind(sims,rep(10, each =length(sims))) |
357 | colnames(aa)=c("isim","model") |
358 | write.table(aa,file=paste("SimulationSettings10.txt",sep=""),row.names=FALSE,sep=",") |
359 | load("~/valse/data/data.RData") |
360 | load("~/valse/data/data.RData") |
361 | X |
362 | Y |
363 | library("devtools", lib.loc="~/R/x86_64-pc-linux-gnu-library/3.3") |
364 | library(roxygen2) |
365 | setwd("~/valse") |
366 | document() |
367 | document() |
368 | setwd("~/") |
369 | install("valse") |
370 | c(9.75, |
371 | 20, |
372 | 11.75, |
373 | 11, |
374 | 8.25, |
375 | 12.5, |
376 | 11, |
377 | 18, |
378 | 7, |
379 | 12.75, |
380 | 13, |
381 | 14.75, |
382 | 4.75, |
383 | 11, |
384 | 20, |
385 | 13.5, |
386 | 8, |
387 | 13.25, |
388 | 6, |
389 | 17.5, |
390 | 13.25, |
391 | 8.5, |
392 | 9.5, |
393 | 16, |
394 | 8, |
395 | 9.5, |
396 | 10.25, |
397 | 13.75, |
398 | 9, |
399 | 14.75, |
400 | 12.5, |
401 | 19.5, |
402 | 17.5, |
403 | 7, |
404 | 11.5, |
405 | 4, |
406 | 7.5, |
407 | 13.25, |
408 | 10.5 |
409 | ) |
410 | notes = c(9.75, |
411 | 20, |
412 | 11.75, |
413 | 11, |
414 | 8.25, |
415 | 12.5, |
416 | 11, |
417 | 18, |
418 | 7, |
419 | 12.75, |
420 | 13, |
421 | 14.75, |
422 | 4.75, |
423 | 11, |
424 | 20, |
425 | 13.5, |
426 | 8, |
427 | 13.25, |
428 | 6, |
429 | 17.5, |
430 | 13.25, |
431 | 8.5, |
432 | 9.5, |
433 | 16, |
434 | 8, |
435 | 9.5, |
436 | 10.25, |
437 | 13.75, |
438 | 9, |
439 | 14.75, |
440 | 12.5, |
441 | 19.5, |
442 | 17.5, |
443 | 7, |
444 | 11.5, |
445 | 4, |
446 | 7.5, |
447 | 13.25, |
448 | 10.5 |
449 | ) |
450 | hist(notes) |
451 | hist(notes, nclass = 20) |
452 | notesBis = c(7.375,19.375,10.125,9,6,12.25,11,18.75,10.5,11.5,15.5,13,2.375,12.75,17.75,15.375,8.125,16,8.5,14.5,11.625,11.25,9.625,14, |
453 | 6.5,11.375,11.875,16.25,10.125,12,6.25,9.75,8.75,3.5,0,0,0,5.75,2,3.75,6.625,5.25) |
454 | hist(notesBis) |
455 | notes = c(7, |
456 | 19, |
457 | 10, |
458 | 9, |
459 | 6, |
460 | 12, |
461 | 11, |
462 | 19, |
463 | 11, |
464 | 12, |
465 | 16, |
466 | 13, |
467 | 2, |
468 | 13, |
469 | 18, |
470 | 15, |
471 | 8, |
472 | 16, |
473 | 9, |
474 | 15, |
475 | 12, |
476 | 11, |
477 | 10, |
478 | 14, |
479 | 7, |
480 | 11, |
481 | 12, |
482 | 16, |
483 | 13, |
484 | 15, |
485 | 14, |
486 | 19, |
487 | 14, |
488 | 4, 9, |
489 | 8, |
490 | 7, |
491 | 8, |
492 | 8 |
493 | ) |
494 | hist(notes) |
495 | shiny::runApp('Dropbox/cranview-master') |
496 | packages = 'shock' |
497 | min_date = Sys.Date() - 1 |
498 | for (pkg in packages) |
499 | { |
500 | # api data for package. we want the initial release - the first element of the "timeline" |
501 | pkg_data = httr::GET(paste0("http://crandb.r-pkg.org/", pkg, "/all")) |
502 | pkg_data = httr::content(pkg_data) |
503 | initial_release = pkg_data$timeline[[1]] |
504 | min_date = min(min_date, as.Date(initial_release)) |
505 | } |
506 | min_date |
507 | load("~/valse/data/data.RData") |
508 | k = 2 |
509 | init = initSmallEM(k, X, Y) |
510 | setwd("~/valse") |
511 | library("devtools", lib.loc="~/R/x86_64-pc-linux-gnu-library/3.3") |
512 | library("roxygen2", lib.loc="~/R/x86_64-pc-linux-gnu-library/3.3") |