From: Benjamin Auder <benjamin.auder@somewhere>
Date: Mon, 24 Apr 2017 19:19:45 +0000 (+0200)
Subject: revise package structure: always predict from 1am to horizon, dataset not cut at... 
X-Git-Url: https://git.auder.net/variants/Chakart/css/assets/doc/html/index.css?a=commitdiff_plain;h=d2ab47a744d8fb29c03a76a7ca2368dae53f9a57;p=talweg.git

revise package structure: always predict from 1am to horizon, dataset not cut at predict_at
---

diff --git a/Etude_En_Cours_R_E_bis.R b/Etude_En_Cours_R_E_bis.R
new file mode 100644
index 0000000..69b1da0
--- /dev/null
+++ b/Etude_En_Cours_R_E_bis.R
@@ -0,0 +1,136 @@
+setwd("/Users/bp/Desktop/CONTRATS_AirNormand/2016/RapportFinalBruno")
+rm(list=ls())
+
+# Lecture des données
+pm  =  read.table("DATA/mesures_horaires_hloc_pm10_a_filer.csv",sep=";",dec=".",header=T) #,row.names=1)
+n     = dim(pm)[1]
+datedebut = "10/12/2008"
+
+# Chargement des données météo et indicateurs
+VarExp <- read.table("DATA/meteo_extra_jourMois.csv",sep=";",dec=".",header=T)
+VarExp <- VarExp[-1,]
+
+# Lecture des dates
+dates =  read.table("DATA/Dates_jours.csv",header=F,as.is=T)
+dates = dates[,1]
+
+# Contruction des matrices de données
+pm.h   <- matrix(pm[,2],ncol=24,byrow=TRUE)
+
+Nlignes = nrow(pm.h)
+Data = cbind(pm.h[1:(Nlignes -1), ], pm.h[2:Nlignes, ])
+dates2 = dates[2:Nlignes]
+rownames(Data) = dates2
+# df contient l'ensemble des données.
+#df <- cbind(Data,varexp[,-1])
+df <- Data
+PMjour <- apply(df[,25:48],1,mean,na.rm=T)
+dfexp <- cbind(VarExp,PMjour)
+
+Dates = c(
+"16/03/2015",
+"19/01/2015",
+"27/04/2015")
+
+Categorie = c("Epandage", "Chauffage", "Non Polluée")
+
+RepFig = "FIGURES_Etude"
+
+ResDates = NULL
+
+nbvois=10
+j=1 # numéro de semaine
+ij=6 # numéro du jour (0 = lundi)
+
+Err24 = NULL
+ErrPrev = NULL
+Kvois = NULL
+
+for (Hc in 5:24) {
+
+H=24+Hc
+fen=H
+#fen=12 ou 24 ou H
+L = (H-fen+1):H
+
+# Premier conditionnement : mois
+indcond <- dfexp[,"Mois"] == 2 | dfexp[,"Mois"] == 3 | dfexp[,"Mois"] == 4 | dfexp[,"Mois"] == 9 | dfexp[,"Mois"] == 10
+data = df[indcond,]
+varexp = dfexp[indcond,]
+
+nl = (1:nrow(data))[rownames(data)==Dates[j]]
+dateJPrev = rownames(data)[nl+ij]
+dataj = as.numeric(data[nl+ij, 1:48])
+data = data[-(nl + ij), ]
+varexp = varexp[-(nl + ij), ]
+indNA = attr(na.omit(data[, 1:48]),"na.action")
+data = data[-indNA,]
+varexp = varexp[-indNA,]
+
+# Conditionnement : les jours avec PMjour +/- large
+large = 1
+bornes = mean(dataj[25:48])+c(-large,large)
+indcond = varexp[,"PMjour"]>=bornes[1] & varexp[,"PMjour"]<=bornes[2]
+data = data[indcond,]
+varexp = varexp[indcond,]
+
+D = rep(0,nrow(data))
+for (k in 1:nrow(data)) {
+       #D[k] = sqrt(sum((1:H)*(dataj[L] -data[k,L])^2))
+       D[k] = sqrt(sum((dataj[L] -data[k,L])^2))
+}
+ind = order(D)[1:nbvois]
+w = 1/(D[ind]^2)
+w = w/sum(w)
+W = w%o%rep(1,48)
+JourMoy = apply(data[ind, 1:48], 2, mean)
+#JourMoy = apply(W*data[ind, 1:48], 2, sum)
+NomFile = paste("Voisins_Epandage_PMjour_Hc_",Hc,".png",sep="")
+Titre = paste("Jour à prévoir : ",dateJPrev," - ", length(ind)," voisins",sep="")
+#erreur = sqrt(sum((dataj[25:48] - JourMoy[25:48])^2))
+if(Hc==24){erreurPrev=NA}else{erreurPrev = mean(abs(dataj[(H+1):48] - JourMoy[(H+1):48]))}
+erreur24 = mean(abs(dataj[25:48] - JourMoy[25:48]))
+png(NomFile)
+matplot(t(data[ind, 1:48]), type = "l", lwd=1.4, lty=1, col=1:length(ind), 
+	cex.axis=1.4, cex.main = 1.7, cex.lab=1.5, 
+	xlab="Heures locales", ylab=paste0("PM10 - Erreurs = ",round(erreur24,1)," / ",round(erreurPrev,1)), main=Titre)
+legend("top",rownames(data)[ind],ncol=2,lwd=1.4, lty=1, col=1:length(ind))
+lines(1:48, dataj, lwd=2.5)
+lines(JourMoy, lty = 2, lwd=2)
+abline(v=c(24.5,H+0.5), lty = 2, lwd=1.2)
+xx=dev.off()
+
+
+
+  Err24 = c(Err24, erreur24)
+  ErrPrev = c(ErrPrev, erreurPrev)
+ResDates = cbind(ResDates, rownames(data)[ind])
+}
+
+
+rownames(ResDates) = 1:10
+
+Kvois = NULL
+for (Col in ncol(ResDates):1) {
+K = 0
+for (I in 1:10){
+    for (J in 1:10){
+       if (ResDates[I,1] == ResDates[J,Col]) K = K +1
+     }
+}
+Kvois = c(Kvois, K)
+}
+
+# pdf("Erreur_Epandage_PMjour.pdf")
+ymin = min(na.omit(ErrPrev), Err24)
+ymin = min(ymin, Kvois)
+ymax = max(na.omit(ErrPrev), Err24)
+ymax = max(ymax, Kvois)
+plot(5:24,Err24, type = "l", lwd = 2, cex.axis=1.4, cex.lab = 1.5,
+  ylab = "MAE",xlab = "Heures de prévision", ylim= c(ymin,ymax))
+lines(5:24,ErrPrev, lwd=2, lty = 2)
+legend("topright", legend=c("Erreur 24h", "Erreur prévision"), lty = c(1,2), lwd=2, cex=1.5)
+points(5:24, Kvois, cex=1.8, pch = 19)
+# xx = dev.off()
+
+length(D)
diff --git a/pkg/R/Data.R b/pkg/R/Data.R
index 33db5c9..39e34de 100644
--- a/pkg/R/Data.R
+++ b/pkg/R/Data.R
@@ -2,53 +2,47 @@
 #'
 #' Data encapsulation as a list (days) of lists (components).
 #'
-#' The private field .data is a list where each cell contains the variables for a period
-#' of time of 24 hours, from time P+1 until P the next day where P is an integer between
-#' 0 and 23. .data[[1]] refers to the first measured data (serie and exogenous
-#' variables): the corresponding times can be accessed through the function
-#' \code{getTime()} below. Each cell .data[[i]] is itself a list containing five slots,
-#' as described in the 'field' section.
+#' The private field .tv is a list where each cell contains the hourly variables for a
+#' period of time of 24 hours, from 1am to next midnight. The other lists contain
+#' informations on series' levels and exogenous variables (both measured and predicted).
 #'
 #' @usage # Data$new()
 #'
-#' @field .data[[i]] List of
+#' @field .tv List of "time-values"; in each cell:
 #' \itemize{
 #'   \item time: vector of times
-#'   \item centered_serie: centered serie
-#'   \item level: corresponding level
-#'   \item exo: exogenous variables
-#'   \item exo_hat: predicted exogenous variables (for next day)
+#'   \item serie: (measured) serie
 #' }
+#' @field .level Vector of measured levels
+#' @field .level_hat Vector of predicted levels
+#' @field .exo List of measured exogenous variables, cell = numerical vector.
+#' @field .exo_hat List of predicted exogenous variables, cell = numerical vector.
 #'
 #' @section Methods:
 #' \describe{
 #' \item{\code{getSize()}}{
 #'   Number of series in dataset.}
-#' \item{\code{getStdHorizon()}}{
-#'   Number of time steps from serie[1] until midnight}
-#' \item{\code{append(time, serie, exo, exo_hat)}}{
+#' \item{\code{append(time, value, level_hat, exo, exo_hat)}}{
 #'   Measured data for given vector of times + exogenous predictions from
 #'   last midgnight.}
 #' \item{\code{getTime(index)}}{
 #'   Times (vector) at specified index.}
-#' \item{\code{getCenteredSerie(index)}}{
-#'   Centered serie at specified index.}
-#' \item{\code{getCenteredSeries(indices)}}{
-#'   Centered series at specified indices (in columns).}
-#' \item{\code{getLevel(index)}}{
-#'   Level at specified index.}
 #' \item{\code{getSerie(index)}}{
 #'   Serie (centered+level) at specified index.}
 #' \item{\code{getSeries(indices)}}{
 #'   Series at specified indices (in columns).}
-#' \item{\code{getExoHat(index)}}{
-#'   Predicted exogenous variables at specified index.}
+#' \item{\code{getLevel(index)}}{
+#'   Measured level at specified index.}
+#' \item{\code{getLevelHat(index)}}{
+#'   Predicted level at specified index.}
+#' \item{\code{getCenteredSerie(index)}}{
+#'   Centered serie at specified index.}
+#' \item{\code{getCenteredSeries(indices)}}{
+#'   Centered series at specified indices (in columns).}
 #' \item{\code{getExo(index)}}{
 #'   Measured exogenous variables at specified index.}
-#' \item{\code{removeFirst()}}{
-#'   Remove first list element (if truncated).}
-#' \item{\code{removeLast()}}{
-#'   Remove last list element (if truncated).}
+#' \item{\code{getExoHat(index)}}{
+#'   Predicted exogenous variables at specified index.}
 #' }
 #'
 #' @docType class
@@ -56,66 +50,87 @@
 #'
 Data = R6::R6Class("Data",
 	private = list(
-		.data = list()
+		.tv = list(),
+		.level = vector("double",0),
+		.level_hat = vector("double",0),
+		.exo = list(),
+		.exo_hat = list()
 	),
 	public = list(
 		getSize = function()
-			length(private$.data)
-		,
-		getStdHorizon = function()
-			24 - as.POSIXlt( private$.data[[1]]$time[1] )$hour + 1
+			length(private$.tv)
 		,
-		append = function(time, serie, exo, exo_hat)
+		append = function(time=NULL, value=NULL, level_hat=NULL, exo=NULL, exo_hat=NULL)
 		{
-			level = mean(serie, na.rm=TRUE)
-			centered_serie = serie - level
-			private$.data[[length(private$.data)+1]] <- list(
-				"time"=time, #H-24 --> H-1
-				"centered_serie"=centered_serie, #at 'time'
-				"level"=level, #at 'time'
-				"exo"=exo, #at 'time' (yersteday 0am to last midnight)
-				"exo_hat"=exo_hat) #today 0am to next midnight
+			if (!is.null(time) && !is.null(value))
+			{
+				L = length(private$.tv)
+				if (L == 0 || strftime( tail(private$.tv[[L]]$time,1),
+					format="%H:%M:%S", tz="GMT" ) == "00:00:00")
+				{
+					# Append a new cell
+					private$.tv[[L+1]] <- list("time"=time, "serie"=value)
+				}
+				else
+				{
+					# Complete current cell
+					private$.tv[[L]]$time = c(private$.tv[[L]]$time, time)
+					private$.tv[[L]]$serie = c(private$.tv[[L]]$serie, value)
+				}
+			}
+			if (strftime( tail(private$.tv[[length(private$.tv)]]$time,1),
+					format="%H:%M:%S", tz="GMT" ) == "00:00:00")
+			{
+				private$.level = c(private$.level,
+					mean(private$.tv[[length(private$.tv)]]$serie, na.rm=TRUE))
+			}
+			if (!is.null(level_hat))
+				private$.level_hat = c(private$.level_hat, level_hat)
+			if (!is.null(exo))
+				private$.exo[[length(private$.exo)+1]] = exo
+			if (!is.null(exo_hat))
+				private$.exo_hat[[length(private$.exo_hat)+1]] = exo_hat
 		},
 		getTime = function(index)
 		{
 			index = dateIndexToInteger(index, self)
-			private$.data[[index]]$time
+			private$.tv[[index]]$time
 		},
-		getCenteredSerie = function(index)
+		getSerie = function(index)
 		{
 			index = dateIndexToInteger(index, self)
-			private$.data[[index]]$centered_serie
+			private$.tv[[index]]$serie
 		},
-		getCenteredSeries = function(indices)
-			sapply(indices, function(i) self$getCenteredSerie(i))
+		getSeries = function(indices)
+			sapply(indices, function(i) self$getSerie(i))
 		,
 		getLevel = function(index)
 		{
 			index = dateIndexToInteger(index, self)
-			private$.data[[index]]$level
+			private$.level[index]
 		},
-		getSerie = function(index)
+		getLevelHat = function(index)
 		{
 			index = dateIndexToInteger(index, self)
-			private$.data[[index]]$centered_serie + private$.data[[index]]$level
+			private$.level_hat[index]
 		},
-		getSeries = function(indices)
-			sapply(indices, function(i) self$getSerie(i))
-		,
-		getExoHat = function(index)
+		getCenteredSerie = function(index)
 		{
 			index = dateIndexToInteger(index, self)
-			private$.data[[index]]$exo_hat
+			private$.tv[[index]]$serie - private$.level[index]
 		},
+		getCenteredSeries = function(indices)
+			sapply(indices, function(i) self$getCenteredSerie(i))
+		,
 		getExo = function(index)
 		{
 			index = dateIndexToInteger(index, self)
-			private$.data[[index]]$exo
+			private$.exo[[index]]
 		},
-		removeFirst = function()
-			private$.data <- private$.data[2:length(private$.data)]
-		,
-		removeLast = function()
-			private$.data <- private$.data[1:(length(private$.data)-1)]
+		getExoHat = function(index)
+		{
+			index = dateIndexToInteger(index, self)
+			private$.exo_hat[[index]]
+		}
 	)
 )
diff --git a/pkg/R/F_Average.R b/pkg/R/F_Average.R
index d0b40b4..6cd2d6e 100644
--- a/pkg/R/F_Average.R
+++ b/pkg/R/F_Average.R
@@ -17,25 +17,23 @@ AverageForecaster = R6::R6Class("AverageForecaster",
 	inherit = Forecaster,
 
 	public = list(
-		predictShape = function(data, today, memory, horizon, ...)
+		predictShape = function(data, today, memory, predict_from, horizon, ...)
 		{
-			avg = rep(0., horizon)
+			avg = rep(0., (horizon-predict_from+1))
 			first_day = max(1, today-memory)
-			index = today-7 + 1
+			index <- today
 			nb_no_na_series = 0
 			repeat
 			{
-				{
-					serie_on_horizon = data$getCenteredSerie(index)[1:horizon]
-					index = index - 7
-				};
+				index = index - 7
+				if (index < first_day)
+					break
+				serie_on_horizon = data$getCenteredSerie(index)[predict_from:horizon]
 				if (!any(is.na(serie_on_horizon)))
 				{
 					avg = avg + serie_on_horizon
 					nb_no_na_series = nb_no_na_series + 1
-				};
-				if (index < first_day)
-					break
+				}
 			}
 			avg / nb_no_na_series
 		}
diff --git a/pkg/R/F_Neighbors.R b/pkg/R/F_Neighbors.R
index 1437442..ea18bb6 100644
--- a/pkg/R/F_Neighbors.R
+++ b/pkg/R/F_Neighbors.R
@@ -4,14 +4,15 @@
 #' where days in the past are chosen and weighted according to some similarity measures.
 #'
 #' The main method is \code{predictShape()}, taking arguments data, today, memory,
-#' horizon respectively for the dataset (object output of \code{getData()}), the current
-#' index, the data depth (in days) and the number of time steps to forecast.
+#' predict_from, horizon respectively for the dataset (object output of
+#' \code{getData()}), the current index, the data depth (in days), the first predicted
+#' hour and the last predicted hour.
 #' In addition, optional arguments can be passed:
 #' \itemize{
 #'   \item local : TRUE (default) to constrain neighbors to be "same days within same
 #'     season"
 #'   \item simtype : 'endo' for a similarity based on the series only,<cr>
-#'             'exo' for a similaruty based on exogenous variables only,<cr>
+#'             'exo' for a similarity based on exogenous variables only,<cr>
 #'             'mix' for the product of 'endo' and 'exo',<cr>
 #'             'none' (default) to apply a simple average: no computed weights
 #'   \item window : A window for similarities computations; override cross-validation
@@ -38,17 +39,20 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 	inherit = Forecaster,
 
 	public = list(
-		predictShape = function(data, today, memory, horizon, ...)
+		predictShape = function(data, today, memory, predict_from, horizon, ...)
 		{
 			# (re)initialize computed parameters
 			private$.params <- list("weights"=NA, "indices"=NA, "window"=NA)
 
 			# Do not forecast on days with NAs (TODO: softer condition...)
-			if (any(is.na(data$getCenteredSerie(today))))
+			if (any(is.na(data$getSerie(today-1)))
+				|| any(is.na(data$getSerie(today)[1:(predict_from-1)])))
+			{
 				return (NA)
+			}
 
 			# Determine indices of no-NAs days followed by no-NAs tomorrows
-			fdays = .getNoNA2(data, max(today-memory,1), today-1)
+			fdays = .getNoNA2(data, max(today-memory,1), today-2)
 
 			# Get optional args
 			local = ifelse(hasArg("local"), list(...)$local, TRUE) #same level + season?
@@ -56,7 +60,7 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 			if (hasArg("window"))
 			{
 				return ( private$.predictShapeAux(data,
-					fdays, today, horizon, local, list(...)$window, simtype, TRUE) )
+					fdays, today, predict_from, horizon, local, list(...)$window, simtype, TRUE) )
 			}
 
 			# Indices of similar days for cross-validation; TODO: 20 = magic number
@@ -71,13 +75,13 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 				for (i in seq_along(cv_days))
 				{
 					# mix_strategy is never used here (simtype != "mix"), therefore left blank
-					prediction = private$.predictShapeAux(data, fdays, cv_days[i], horizon, local,
-						window, simtype, FALSE)
+					prediction = private$.predictShapeAux(data, fdays, cv_days[i], predict_from,
+						horizon, local, window, simtype, FALSE)
 					if (!is.na(prediction[1]))
 					{
 						nb_jours = nb_jours + 1
 						error = error +
-							mean((data$getSerie(cv_days[i]+1)[1:horizon] - prediction)^2)
+							mean((data$getSerie(cv_days[i]+1)[predict_from:horizon] - prediction)^2)
 					}
 				}
 				return (error / nb_jours)
@@ -105,14 +109,14 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 				else #none: value doesn't matter
 					1
 
-			return(private$.predictShapeAux(data, fdays, today, horizon, local,
-				best_window, simtype, TRUE))
+			return( private$.predictShapeAux(data, fdays, today, predict_from, horizon, local,
+				best_window, simtype, TRUE) )
 		}
 	),
 	private = list(
 		# Precondition: "today" is full (no NAs)
-		.predictShapeAux = function(data, fdays, today, horizon, local, window, simtype,
-			final_call)
+		.predictShapeAux = function(data, fdays, today, predict_from, horizon, local, window,
+			simtype, final_call)
 		{
 			fdays_cut = fdays[ fdays < today ]
 			if (length(fdays_cut) <= 1)
@@ -135,7 +139,7 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 						private$.params$indices <- fdays
 						private$.params$window <- 1
 					}
-					return ( data$getSerie(fdays[1])[1:horizon] )
+					return ( data$getSerie(fdays[1]+1)[predict_from:horizon] )
 				}
 			}
 			else
@@ -147,10 +151,10 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 				window_endo = ifelse(simtype=="mix", window[1], window)
 
 				# Distances from last observed day to days in the past
-				serieToday = data$getSerie(today)
+				lastSerie = c( data$getSerie(today-1), data$getSerie(today)[1:(predict_from-1)] )
 				distances2 = sapply(fdays, function(i) {
-					delta = serieToday - data$getSerie(i)
-					mean(delta^2)
+					delta = lastSerie - c(data$getSerie(i),data$getSerie(i+1)[1:(predict_from-1)])
+					sqrt(mean(delta^2))
 				})
 
 				simils_endo <- .computeSimils(distances2, window_endo)
@@ -161,12 +165,12 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 				# Compute exogen similarities using given window
 				window_exo = ifelse(simtype=="mix", window[2], window)
 
-				M = matrix( nrow=1+length(fdays), ncol=1+length(data$getExo(today)) )
-				M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) )
+				M = matrix( ncol=1+length(fdays), nrow=1+length(data$getExo(1)) )
+				M[,1] = c( data$getLevelHat(today), as.double(data$getExoHat(today)) )
 				for (i in seq_along(fdays))
-					M[i+1,] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) )
+					M[,i+1] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) )
 
-				sigma = cov(M) #NOTE: robust covariance is way too slow
+				sigma = cov(t(M)) #NOTE: robust covariance is way too slow
 				# TODO: 10 == magic number; more robust way == det, or always ginv()
 				sigma_inv =
 					if (length(fdays) > 10)
@@ -176,7 +180,7 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 
 				# Distances from last observed day to days in the past
 				distances2 = sapply(seq_along(fdays), function(i) {
-					delta = M[1,] - M[i+1,]
+					delta = M[,1] - M[,i+1]
 					delta %*% sigma_inv %*% delta
 				})
 
@@ -194,9 +198,12 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 					rep(1, length(fdays))
 			similarities = similarities / sum(similarities)
 
-			prediction = rep(0, horizon)
+			prediction = rep(0, horizon-predict_from+1)
 			for (i in seq_along(fdays))
-				prediction = prediction + similarities[i] * data$getSerie(fdays[i]+1)[1:horizon]
+			{
+				prediction = prediction +
+					similarities[i] * data$getSerie(fdays[i]+1)[predict_from:horizon]
+			}
 
 			if (final_call)
 			{
@@ -230,10 +237,13 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 #
 .getConstrainedNeighbs = function(today, data, fdays, min_neighbs=10, max_neighbs=12)
 {
-	levelToday = data$getLevel(today)
-	distances = sapply(fdays, function(i) abs(data$getLevel(i)-levelToday))
-	#TODO: 2, +3 : magic numbers
-	dist_thresh = 2
+	levelToday = data$getLevelHat(today)
+	levelYersteday = data$getLevel(today-1)
+	distances = sapply(fdays, function(i) {
+		sqrt((data$getLevel(i)-levelYersteday)^2 + (data$getLevel(i+1)-levelToday)^2)
+	})
+	#TODO: 1, +1, +3 : magic numbers
+	dist_thresh = 1
 	min_neighbs = min(min_neighbs,length(fdays))
 	repeat
 	{
@@ -241,15 +251,14 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 		nb_neighbs = sum(same_pollution)
 		if (nb_neighbs >= min_neighbs) #will eventually happen
 			break
-		dist_thresh = dist_thresh + 3
+		dist_thresh = dist_thresh + ifelse(dist_thresh>1,3,1)
 	}
 	fdays = fdays[same_pollution]
 	max_neighbs = 12
 	if (nb_neighbs > max_neighbs)
 	{
 		# Keep only max_neighbs closest neighbors
-		fdays = fdays[
-			sort(distances[same_pollution],index.return=TRUE)$ix[1:max_neighbs] ]
+		fdays = fdays[ order(distances[same_pollution])[1:max_neighbs] ]
 	}
 	fdays
 }
diff --git a/pkg/R/F_Persistence.R b/pkg/R/F_Persistence.R
index dde8612..7035231 100644
--- a/pkg/R/F_Persistence.R
+++ b/pkg/R/F_Persistence.R
@@ -18,23 +18,21 @@ PersistenceForecaster = R6::R6Class("PersistenceForecaster",
 	inherit = Forecaster,
 
 	public = list(
-		predictShape = function(data, today, memory, horizon, ...)
+		predictShape = function(data, today, memory, predict_from, horizon, ...)
 		{
 			# Return centered last (similar) day curve, avoiding NAs until memory is run
 			first_day = max(1, today-memory)
 			same_day = ifelse(hasArg("same_day"), list(...)$same_day, TRUE)
-			# If 'same_day', get the last known future of similar day: -7 + 1 == -6
-			index = today - ifelse(same_day,6,0)
+			index <- today
 			repeat
 			{
-				{
-					last_serie = data$getCenteredSerie(index)[1:horizon]
-					index = index - ifelse(same_day,7,1)
-				};
-				if (!any(is.na(last_serie)))
-					return (last_serie);
+				# If 'same_day', get the last known future of similar day
+				index = index - ifelse(same_day,7,1)
 				if (index < first_day)
 					return (NA)
+				last_serie = data$getCenteredSerie(index)[predict_from:horizon]
+				if (!any(is.na(last_serie)))
+					return (last_serie)
 			}
 		}
 	)
diff --git a/pkg/R/F_Zero.R b/pkg/R/F_Zero.R
index 56bb4a5..4e1ae11 100644
--- a/pkg/R/F_Zero.R
+++ b/pkg/R/F_Zero.R
@@ -13,7 +13,7 @@ ZeroForecaster = R6::R6Class("ZeroForecaster",
 	inherit = Forecaster,
 
 	public = list(
-		predictShape = function(data, today, memory, horizon, ...)
-			rep(0, horizon)
+		predictShape = function(data, today, memory, predict_from, horizon, ...)
+			rep(0, (horizon-predict_from+1))
 	)
 )
diff --git a/pkg/R/Forecast.R b/pkg/R/Forecast.R
index 323ebfb..a983046 100644
--- a/pkg/R/Forecast.R
+++ b/pkg/R/Forecast.R
@@ -3,11 +3,9 @@
 #' Forecast encapsulation as a list (days where prediction occur) of lists (components).
 #'
 #' The private field .pred is a list where each cell contains the predicted variables for
-#' a period of time of H<=24 hours, from hour P+1 until P+H, where P+1 is taken right
-#' after the end of the period designated by \code{getIndexInData()}. In other terms,
-#' \code{forecast$getForecast(i)} return forecasts for \code{data$getSerie(i+1)}.
-#' Each cell .pred[[i]] is itself a list containing three slots, as described in the
-#' 'field' section.
+#' a period of time of H<=24 hours, from hour P until P+H-1, where P == predict_from.
+#' \code{forecast$getForecast(i)} output forecasts for
+#' \code{data$getSerie(forecast$getIndexInData(i))}.
 #'
 #' @usage # Forecast$new(dates)
 #'
diff --git a/pkg/R/Forecaster.R b/pkg/R/Forecaster.R
index cefa1ea..5258760 100644
--- a/pkg/R/Forecaster.R
+++ b/pkg/R/Forecaster.R
@@ -52,15 +52,20 @@ Forecaster = R6::R6Class("Forecaster",
 			private$.pjump <- pjump
 			invisible(self)
 		},
-		predictSerie = function(data, today, memory, horizon, ...)
+		predictSerie = function(data, today, memory, predict_from, horizon, ...)
 		{
 			# Parameters (potentially) computed during shape prediction stage
-			predicted_shape = self$predictShape(data, today, memory, horizon, ...)
-			predicted_delta = private$.pjump(data,today,memory,horizon,private$.params,...)
-			# Predicted shape is aligned it on the end of current day + jump
-			predicted_shape+tail(data$getSerie(today),1)-predicted_shape[1]+predicted_delta
+			predicted_shape = self$predictShape(data,today,memory,predict_from,horizon,...)
+			predicted_delta = private$.pjump(data, today, memory, predict_from, horizon,
+				private$.params, ...)
+
+			# Predicted shape is aligned on the end of current day + jump
+			c( data$getSerie(today)[if (predict_from>=2) 1:(predict_from-1) else c()],
+				predicted_shape - predicted_shape[1] + predicted_delta +
+					ifelse(predict_from>=2,
+						data$getSerie(today)[predict_from-1], tail(data$getSerie(today-1),1)) )
 		},
-		predictShape = function(data, today, memory, horizon, ...)
+		predictShape = function(data, today, memory, predict_from, horizon, ...)
 			NULL #empty default implementation: to implement in inherited classes
 		,
 		getParameters = function()
diff --git a/pkg/R/J_Neighbors.R b/pkg/R/J_Neighbors.R
index 40341d9..58453ea 100644
--- a/pkg/R/J_Neighbors.R
+++ b/pkg/R/J_Neighbors.R
@@ -10,7 +10,8 @@
 #'
 #' @aliases J_Neighbors
 #'
-getNeighborsJumpPredict = function(data, today, memory, horizon, params, ...)
+getNeighborsJumpPredict = function(data, today, memory, predict_from, horizon,
+	params, ...)
 {
 	first_day = max(1, today-memory)
 	filter = (params$indices >= first_day)
@@ -18,7 +19,10 @@ getNeighborsJumpPredict = function(data, today, memory, horizon, params, ...)
 	weights = params$weights[filter]
 
 	gaps = sapply(indices, function(i) {
-		head( data$getSerie(i+1),1 ) - tail( data$getSerie(i),1 )
+		if (predict_from >= 2)
+			data$getSerie(i+1)[predict_from] - data$getSerie(i+1)[predict_from-1]
+		else
+			head(data$getSerie(i+1),1) - tail(data$getSerie(i),1)
 	})
 	scal_product = weights * gaps
 	norm_fact = sum( weights[!is.na(scal_product)] )
diff --git a/pkg/R/J_Persistence.R b/pkg/R/J_Persistence.R
index 9e56742..8298a89 100644
--- a/pkg/R/J_Persistence.R
+++ b/pkg/R/J_Persistence.R
@@ -10,22 +10,25 @@
 #'
 #' @aliases J_Persistence
 #'
-getPersistenceJumpPredict = function(data, today, memory, horizon, params, ...)
+getPersistenceJumpPredict = function(data, today, memory, predict_from,
+	horizon, params, ...)
 {
 	#return gap between end of similar day curve and first day of tomorrow (in the past)
 	first_day = max(1, today-memory)
 	same_day = ifelse(hasArg("same_day"), list(...)$same_day, TRUE)
-	index = today - ifelse(same_day,7,1)
+	index <- today
 	repeat
 	{
-		{
-			last_serie_end = tail( data$getSerie(index), 1)
-			last_tomorrow_begin = head( data$getSerie(index+1), 1)
-			index = index - ifelse(same_day,7,1)
-		};
-		if (!is.na(last_serie_end) && !is.na(last_tomorrow_begin))
-			return (last_tomorrow_begin - last_serie_end);
+		# If 'same_day', get the last known future of similar day
+		index = index - ifelse(same_day,7,1)
 		if (index < first_day)
 			return (NA)
+		gap <-
+			if (predict_from >= 2)
+				data$getSerie(index)[predict_from] - data$getSerie(index)[predict_from-1]
+			else
+				head(data$getSerie(index),1) - tail(data$getSerie(index-1),1)
+		if (!is.na(gap))
+			return (gap)
 	}
 }
diff --git a/pkg/R/computeError.R b/pkg/R/computeError.R
index 3aa028f..0b1771f 100644
--- a/pkg/R/computeError.R
+++ b/pkg/R/computeError.R
@@ -13,7 +13,7 @@
 #'   step, averaged on the L forecasting days.
 #'
 #' @export
-computeError = function(data, pred, horizon=data$getStdHorizon())
+computeError = function(data, pred, predict_from, horizon=length(data$getSerie(1)))
 {
 	L = pred$getSize()
 	mape_day = rep(0, horizon)
@@ -25,8 +25,8 @@ computeError = function(data, pred, horizon=data$getStdHorizon())
 	for (i in seq_len(L))
 	{
 		index = pred$getIndexInData(i)
-		serie = data$getSerie(index+1)[1:horizon]
-		forecast = pred$getForecast(i)[1:horizon]
+		serie = data$getSerie(index)[predict_from:horizon]
+		forecast = pred$getForecast(i)[predict_from:horizon]
 		if (!any(is.na(serie)) && !any(is.na(forecast)))
 		{
 			nb_no_NA_data = nb_no_NA_data + 1
diff --git a/pkg/R/computeForecast.R b/pkg/R/computeForecast.R
index a4a539a..e967cc7 100644
--- a/pkg/R/computeForecast.R
+++ b/pkg/R/computeForecast.R
@@ -49,13 +49,16 @@
 #'   #do_something_with_pred
 #' }}
 #' @export
-computeForecast = function(data, indices, forecaster, pjump,
-	memory=Inf, horizon=data$getStdHorizon(), ncores=3, ...)
+computeForecast = function(data, indices, forecaster, pjump, predict_from,
+	memory=Inf, horizon=length(data$getSerie(1)), ncores=3, ...)
 {
 	# (basic) Arguments sanity checks
+	predict_from = as.integer(predict_from)[1]
+	if (! predict_from %in% 1:length(data$getSerie(1)))
+		stop("predict_from in [1,24] (hours)")
 	horizon = as.integer(horizon)[1]
-	if (horizon<=0 || horizon>length(data$getCenteredSerie(1)))
-		stop("Horizon too short or too long")
+	if (horizon<=predict_from || horizon>length(data$getSerie(1)))
+		stop("Horizon in [predict_from+1,24] (hours)")
 	integer_indices = sapply(indices, function(i) dateIndexToInteger(i,data))
 	if (any(integer_indices<=0 | integer_indices>data$getSize()))
 		stop("Indices out of range")
@@ -73,7 +76,7 @@ computeForecast = function(data, indices, forecaster, pjump,
 		p <- parallel::mclapply(seq_along(integer_indices), function(i) {
 			list(
 				"forecast" = forecaster$predictSerie(
-					data, integer_indices[i], memory, horizon, ...),
+					data, integer_indices[i], memory, predict_from, horizon, ...),
 				"params"= forecaster$getParameters(),
 				"index" = integer_indices[i] )
 			}, mc.cores=ncores)
@@ -83,7 +86,7 @@ computeForecast = function(data, indices, forecaster, pjump,
 		p <- lapply(seq_along(integer_indices), function(i) {
 			list(
 				"forecast" = forecaster$predictSerie(
-					data, integer_indices[i], memory, horizon, ...),
+					data, integer_indices[i], memory, predict_from, horizon, ...),
 				"params"= forecaster$getParameters(),
 				"index" = integer_indices[i] )
 			})
diff --git a/pkg/R/getData.R b/pkg/R/getData.R
index a6401f9..f1f8861 100644
--- a/pkg/R/getData.R
+++ b/pkg/R/getData.R
@@ -10,11 +10,8 @@
 #' @param exo_data Exogenous variables, as a data frame or a CSV file; first column is
 #'   dates, next block are measurements for the day, and final block are exogenous
 #'   forecasts (for the same day).
-#' @param input_tz Timezone in the input files ("GMT" or e.g. "Europe/Paris")
 #' @param date_format How date/time are stored (e.g. year/month/day hour:minutes;
 #'   see ?strptime)
-#' @param working_tz Timezone to work with ("GMT" or e.g. "Europe/Paris")
-#' @param predict_at When does the prediction take place? Integer, in hours. Default: 0
 #' @param limit Number of days to extract (default: Inf, for "all")
 #'
 #' @return An object of class Data
@@ -24,14 +21,9 @@
 #' exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv",package="talweg"))
 #' data = getData(ts_data, exo_data, limit=120)
 #' @export
-getData = function(ts_data, exo_data, input_tz="GMT", date_format="%d/%m/%Y %H:%M",
-	working_tz="GMT", predict_at=0, limit=Inf)
+getData = function(ts_data, exo_data, date_format="%d/%m/%Y %H:%M", limit=Inf)
 {
 	# Sanity checks (not full, but sufficient at this stage)
-	if (!is.character(input_tz) || !is.character(working_tz))
-		stop("Bad timezone (see ?timezone)")
-	input_tz = input_tz[1]
-	working_tz = working_tz[1]
 	if ( (!is.data.frame(ts_data) && !is.character(ts_data)) ||
 			(!is.data.frame(exo_data) && !is.character(exo_data)) )
 		stop("Bad time-series / exogenous input (data frame or CSV file)")
@@ -39,22 +31,20 @@ getData = function(ts_data, exo_data, input_tz="GMT", date_format="%d/%m/%Y %H:%
 		ts_data = ts_data[1]
 	if (is.character(exo_data))
 		exo_data = exo_data[1]
-	predict_at = as.integer(predict_at)[1]
-	if (predict_at<0 || predict_at>23)
-		stop("Bad predict_at (0-23)")
 	if (!is.character(date_format))
 		stop("Bad date_format (character)")
 	date_format = date_format[1]
+	if (!is.numeric(limit) || limit < 0)
+		stop("limit: positive integer")
 
 	ts_df =
 		if (is.character(ts_data))
 			read.csv(ts_data)
 		else
 			ts_data
-	# Convert to the desired timezone (usually "GMT" or "Europe/Paris")
-	formatted_dates_POSIXlt = strptime(as.character(ts_df[,1]), date_format, tz=input_tz)
-	ts_df[,1] = format(
-		as.POSIXct(formatted_dates_POSIXlt, tz=input_tz), tz=working_tz, usetz=TRUE)
+	# Convert to GMT (pretend it's GMT; no impact)
+	dates_POSIXlt = strptime(as.character(ts_df[,1]), date_format, tz="GMT")
+	ts_df[,1] = format(as.POSIXct(dates_POSIXlt, tz="GMT"), tz="GMT", usetz=TRUE)
 
 	exo_df =
 		if (is.character(exo_data))
@@ -80,29 +70,18 @@ getData = function(ts_data, exo_data, input_tz="GMT", date_format="%d/%m/%Y %H:%
 				line = line + 1
 			};
 			if (line >= nb_lines + 1
-				|| as.POSIXlt(ts_df[line-1,1],tz=working_tz)$hour == predict_at)
+				|| as.POSIXlt(ts_df[line-1,1],tz="GMT")$hour == 0)
 			{
 				break
 			}
 		}
 
-		exo = as.data.frame( exo_df[i,2:(1+nb_exos)] )
-		exo_hat =
-			if (i < nrow(exo_df))
-				as.data.frame( exo_df[i+1,(1+nb_exos+1):(1+2*nb_exos)] )
-			else
-				NA #exogenous prediction for next day are useless on last day
-		data$append(time, serie, exo, exo_hat)
+		# TODO: 2 modes, "operational" and "testing"; would need PM10 predictions
+		data$append(time=time, value=serie, level_hat=mean(serie,na.rm=TRUE),
+			exo=exo_df[i,2:(1+nb_exos)], exo_hat=exo_df[i,(1+nb_exos+1):(1+2*nb_exos)])
 		if (i >= limit)
 			break
 		i = i + 1
 	}
-	if (length(data$getCenteredSerie(1)) < length(data$getCenteredSerie(2)))
-		data$removeFirst()
-	if (length(data$getCenteredSerie(data$getSize()))
-		< length(data$getCenteredSerie(data$getSize()-1)))
-	{
-		data$removeLast()
-	}
 	data
 }
diff --git a/pkg/R/plot.R b/pkg/R/plot.R
index fe2fb4e..59a26a7 100644
--- a/pkg/R/plot.R
+++ b/pkg/R/plot.R
@@ -82,9 +82,8 @@ plotError <- function(err, cols=seq_along(err))
 #' @export
 plotPredReal <- function(data, pred, index)
 {
-	horizon = length(pred$getForecast(1))
-	measure = data$getSerie( pred$getIndexInData(index)+1 )[1:horizon]
 	prediction = pred$getForecast(index)
+	measure = data$getSerie( pred$getIndexInData(index) )[length(prediction)]
 	yrange = range(measure, prediction)
 	par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=3)
 	plot(measure, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10")
@@ -144,6 +143,7 @@ plotFbox <- function(data, indices=seq_len(data$getSize()))
 #' @param index Index in forecast (integer or date)
 #' @param limit Number of neighbors to consider
 #' @param plot Should the result be plotted?
+#' @param predict_from First prediction instant
 #'
 #' @return A list with
 #' \itemize{
@@ -153,10 +153,9 @@ plotFbox <- function(data, indices=seq_len(data$getSize()))
 #' }
 #'
 #' @export
-computeFilaments <- function(data, pred, index, limit=60, plot=TRUE)
+computeFilaments <- function(data, pred, index, predict_from, limit=60, plot=TRUE)
 {
-	ref_serie = data$getCenteredSerie( pred$getIndexInData(index) )
-	if (any(is.na(ref_serie)))
+	if (is.null(pred$getParams(index)$weights) || is.na(pred$getParams(index)$weights[1]))
 		stop("computeFilaments requires a serie without NAs")
 
 	# Compute colors for each neighbor (from darkest to lightest)
@@ -170,7 +169,8 @@ computeFilaments <- function(data, pred, index, limit=60, plot=TRUE)
 	if (plot)
 	{
 		# Complete series with (past and present) tomorrows
-		ref_serie = c(ref_serie, data$getCenteredSerie( pred$getIndexInData(index)+1 ))
+		ref_serie = c( data$getCenteredSerie( pred$getIndexInData(index)-1 ),
+			data$getCenteredSerie( pred$getIndexInData(index) ) )
 		centered_series = rbind(
 			data$getCenteredSeries( pred$getParams(index)$indices ),
 			data$getCenteredSeries( pred$getParams(index)$indices+1 ) )
@@ -185,7 +185,7 @@ computeFilaments <- function(data, pred, index, limit=60, plot=TRUE)
 		}
 		# Also plot ref curve, in red
 		plot(ref_serie, ylim=yrange, type="l", col="#FF0000", xlab="", ylab="")
-		abline(v=24, lty=2, col=colors()[56], lwd=1)
+		abline(v=24+predict_from-0.5, lty=2, col=colors()[56], lwd=1)
 	}
 
 	list(
@@ -202,7 +202,7 @@ computeFilaments <- function(data, pred, index, limit=60, plot=TRUE)
 #' @param fil Output of \code{computeFilaments}
 #'
 #' @export
-plotFilamentsBox = function(data, fil)
+plotFilamentsBox = function(data, fil, predict_from)
 {
 	if (!requireNamespace("rainbow", quietly=TRUE))
 		stop("Functional boxplot requires the rainbow package")
@@ -220,7 +220,7 @@ plotFilamentsBox = function(data, fil)
 	par(new=TRUE)
 	plot(c(data$getSerie(fil$index),data$getSerie(fil$index+1)), type="l", lwd=2, lty=2,
 		ylim=c(usr[3] + yr, usr[4] - yr), xlab="", ylab="")
-	abline(v=24, lty=2, col=colors()[56])
+	abline(v=24+predict_from-0.5, lty=2, col=colors()[56])
 }
 
 #' Plot relative conditional variability / absolute variability
@@ -232,7 +232,7 @@ plotFilamentsBox = function(data, fil)
 #' @inheritParams plotFilamentsBox
 #'
 #' @export
-plotRelVar = function(data, fil)
+plotRelVar = function(data, fil, predict_from)
 {
 	ref_var = c( apply(data$getSeries(fil$neighb_indices),1,sd),
 		apply(data$getSeries(fil$neighb_indices+1),1,sd) )
@@ -247,5 +247,5 @@ plotRelVar = function(data, fil)
 		xlab="Time (hours)", ylab="Standard deviation")
 	par(new=TRUE)
 	plot(global_var, type="l", col=2, lwd=3, ylim=yrange, xlab="", ylab="")
-	abline(v=24, lty=2, col=colors()[56])
+	abline(v=24+predict_from-0.5, lty=2, col=colors()[56])
 }
diff --git a/pkg/R/utils.R b/pkg/R/utils.R
index b0d0ae0..96ec601 100644
--- a/pkg/R/utils.R
+++ b/pkg/R/utils.R
@@ -127,6 +127,6 @@ getSimilarDaysIndices = function(index, data, limit, same_season, days_in=NULL)
 .getNoNA2 = function(data, first, last)
 {
 	(first:last)[ sapply(first:last, function(i)
-		!any( is.na(data$getCenteredSerie(i)) | is.na(data$getCenteredSerie(i+1)) )
+		!any( is.na(data$getSerie(i)) | is.na(data$getSerie(i+1)) )
 	) ]
 }
diff --git a/pkg/tests/testthat/helper.R b/pkg/tests/testthat/helper.R
index 491cf9c..af98c0b 100644
--- a/pkg/tests/testthat/helper.R
+++ b/pkg/tests/testthat/helper.R
@@ -25,7 +25,7 @@ getDataTest = function(n)
 		time = as.POSIXct((i-1)*60*60*24+15*60*(1:96), origin="2007-01-01", tz="GMT")
 		exo = runif(4)
 		exo_hat = runif(4)
-		data$append(time, serie, exo, exo_hat)
+		data$append(time=time, value=serie, exo=exo, exo_hat=exo_hat)
 	}
 	data
 }
diff --git a/pkg/tests/testthat/test-DateIntegerConv.R b/pkg/tests/testthat/test-DateIntegerConv.R
index 99e5fa5..b3d12fb 100644
--- a/pkg/tests/testthat/test-DateIntegerConv.R
+++ b/pkg/tests/testthat/test-DateIntegerConv.R
@@ -2,10 +2,8 @@ context("Date <--> integer conversions")
 
 ts_data = system.file("testdata","ts_test.csv",package="talweg")
 exo_data = system.file("testdata","exo_test.csv",package="talweg")
-data0 <<- getData(ts_data, exo_data, input_tz="GMT", date_format="%Y-%m-%d %H:%M",
-	working_tz="GMT", predict_at=0, limit=Inf)
-data7 <<- getData(ts_data, exo_data, input_tz="GMT", date_format="%Y-%m-%d %H:%M",
-	working_tz="GMT", predict_at=7, limit=Inf)
+data0 <<- getData(ts_data, exo_data, date_format="%Y-%m-%d %H:%M", limit=Inf)
+data7 <<- getData(ts_data, exo_data, date_format="%Y-%m-%d %H:%M", limit=Inf)
 
 test_that("dateIndexToInteger works as expected",
 {
diff --git a/pkg/tests/testthat/test-Forecaster.R b/pkg/tests/testthat/test-Forecaster.R
index 09b6f0a..78e387a 100644
--- a/pkg/tests/testthat/test-Forecaster.R
+++ b/pkg/tests/testthat/test-Forecaster.R
@@ -2,18 +2,15 @@ context("Check that forecasters behave as expected")
 
 ts_data = system.file("testdata","ts_test.csv",package="talweg")
 exo_data = system.file("testdata","exo_test.csv",package="talweg")
-data00 <<- getData(ts_data, exo_data, input_tz="GMT", date_format="%Y-%m-%d %H:%M",
-	working_tz="GMT", predict_at=0, limit=Inf)
-data13 <<- getData(ts_data, exo_data, input_tz="GMT", date_format="%Y-%m-%d %H:%M",
-	working_tz="GMT", predict_at=13, limit=Inf)
-#Forecast at sunday to saturday (series 7 to 1), for monday to sunday (series 1 to 7)
-indices <<- seq(as.Date("2007-04-01"),as.Date("2007-04-07"),"days")
+data_p <<- getData(ts_data, exo_data, date_format="%Y-%m-%d %H:%M", limit=Inf)
+#Forecasts from monday to sunday (series 1 to 7)
+indices <<- seq(as.Date("2007-04-02"),as.Date("2007-04-08"),"days")
 pred_order = c(7,1:6) #will facilitate tests
 
 test_that("Average method behave as expected",
 {
-	pred00_z = computeForecast(data00, indices, "Average", "Zero", Inf, 24)
-	pred00_p = computeForecast(data00, indices, "Average", "Persistence", Inf, 24)
+	pred00_z = computeForecast(data_p, indices, "Average", "Zero", 1, Inf, 24, ncores=1)
+	pred00_p = computeForecast(data_p, indices, "Average", "Persistence", 1, Inf, 24)
 	for (i in 1:7)
 	{
 		#zero jump: should predict true values minus 1
@@ -22,30 +19,30 @@ test_that("Average method behave as expected",
 		expect_equal( pred00_p$getForecast(i), rep(i,24) )
 	}
 
-	#NOTE: days become
+	#NOTE: 24h-block become
 	#1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 (14h-->0h then 1h-->13h)
 	#No jump between days, thus zero and persistence are equivalent (and correct)
-	pred13_z = computeForecast(data13, indices, "Average", "Zero", Inf, 24)
-	pred13_p = computeForecast(data13, indices, "Average", "Persistence", Inf, 24)
+	pred13_z = computeForecast(data_p, indices, "Average", "Zero", 14, Inf, 24)
+	pred13_p = computeForecast(data_p, indices, "Average", "Persistence", 14, Inf, 24)
 	for (i in 1:7)
 	{
-		expect_equal( pred13_z$getForecast(i), c( rep(i,11), rep(i%%7+1,13) ) )
-		expect_equal( pred13_p$getForecast(i), c( rep(i,11), rep(i%%7+1,13) ) )
+		expect_equal( pred13_z$getForecast(i), rep(i,24) )
+		expect_equal( pred13_p$getForecast(i), rep(i,24) )
 	}
 
 	#A few extra checks
-	expect_equal( pred00_p$getIndexInData(2), dateIndexToInteger("2007-04-02",data00) )
-	expect_equal( pred00_z$getIndexInData(2), dateIndexToInteger("2007-04-02",data00) )
-	expect_equal( pred13_p$getIndexInData(5), dateIndexToInteger("2007-04-05",data13) )
-	expect_equal( pred13_z$getIndexInData(5), dateIndexToInteger("2007-04-05",data13) )
+	expect_equal( pred00_p$getIndexInData(2), dateIndexToInteger("2007-04-03",data_p) )
+	expect_equal( pred00_z$getIndexInData(2), dateIndexToInteger("2007-04-03",data_p) )
+	expect_equal( pred13_p$getIndexInData(5), dateIndexToInteger("2007-04-06",data_p) )
+	expect_equal( pred13_z$getIndexInData(5), dateIndexToInteger("2007-04-06",data_p) )
 })
 
 test_that("Persistence method behave as expected",
 {
 	#Situation A: +Zero; (generally) correct if jump, wrong otherwise
-	pred00_sd = computeForecast(data00, indices, "Persistence", "Zero", Inf, 24,
+	pred00_sd = computeForecast(data_p, indices, "Persistence", "Zero", 1, Inf, 24,
 		ncores=1, same_day=TRUE)
-	pred00_dd = computeForecast(data00, indices, "Persistence", "Zero", Inf, 24,
+	pred00_dd = computeForecast(data_p, indices, "Persistence", "Zero", 1, Inf, 24,
 		ncores=1, same_day=FALSE)
 	for (i in 1:7)
 	{
@@ -53,25 +50,20 @@ test_that("Persistence method behave as expected",
 		expect_equal(pred00_dd$getForecast(i), rep(pred_order[i],24))
 	}
 
-	pred13_sd = computeForecast(data13, indices, "Persistence", "Zero", Inf, 24,
+	pred13_sd = computeForecast(data_p, indices, "Persistence", "Zero", 14, Inf, 24,
 		ncores=1, same_day=TRUE)
-	pred13_dd = computeForecast(data13, indices, "Persistence", "Zero", Inf, 24,
+	pred13_dd = computeForecast(data_p, indices, "Persistence", "Zero", 14, Inf, 24,
 		ncores=1, same_day=FALSE)
-	for (i in 2:6)
+	for (i in 1:7)
 	{
-		expect_equal(pred13_sd$getForecast(i), c( rep(i,11), rep(i%%7+1,13) ) )
-		expect_equal(pred13_dd$getForecast(i), c( rep(i,11), rep(i%%7+1,13) ) )
+		expect_equal(pred13_sd$getForecast(i), rep(i,24) )
+		expect_equal(pred13_dd$getForecast(i), rep(i,24) )
 	}
-	#boundaries are special cases: OK if same day, quite wrong otherwise
-	expect_equal(pred13_sd$getForecast(1), c( rep(1,11), rep(2,13) ) )
-	expect_equal(pred13_dd$getForecast(1), c( rep(1,11), rep(-5,13) ) )
-	expect_equal(pred13_sd$getForecast(7), c( rep(7,11), rep(1,13) ) )
-	expect_equal(pred13_dd$getForecast(7), c( rep(7,11), rep(8,13) ) )
 
 	#Situation B: +Persistence, (generally) correct
-	pred00_sd = computeForecast(data00, indices, "Persistence", "Persistence", Inf, 24,
+	pred00_sd = computeForecast(data_p, indices, "Persistence", "Persistence", 1, Inf, 24,
 		ncores=1, same_day=TRUE)
-	pred00_dd = computeForecast(data00, indices, "Persistence", "Persistence", Inf, 24,
+	pred00_dd = computeForecast(data_p, indices, "Persistence", "Persistence", 1, Inf, 24,
 		ncores=1, same_day=FALSE)
 	for (i in 3:7)
 	{
@@ -84,55 +76,50 @@ test_that("Persistence method behave as expected",
 	expect_equal(pred00_sd$getForecast(2), rep(2,24) )
 	expect_equal(pred00_dd$getForecast(2), rep(-5,24) )
 
-	pred13_sd = computeForecast(data13, indices, "Persistence", "Persistence", Inf, 24,
+	pred13_sd = computeForecast(data_p, indices, "Persistence", "Persistence", 14, Inf, 24,
 		ncores=1, same_day=TRUE)
-	pred13_dd = computeForecast(data13, indices, "Persistence", "Persistence", Inf, 24,
+	pred13_dd = computeForecast(data_p, indices, "Persistence", "Persistence", 14, Inf, 24,
 		ncores=1, same_day=FALSE)
-	for (i in 2:6)
+	for (i in 1:7)
 	{
-		expect_equal(pred13_sd$getForecast(i), c( rep(i,11), rep(i%%7+1,13) ) )
-		expect_equal(pred13_dd$getForecast(i), c( rep(i,11), rep(i%%7+1,13) ) )
+		expect_equal(pred13_sd$getForecast(i), rep(i,24) )
+		expect_equal(pred13_dd$getForecast(i), rep(i,24) )
 	}
-	#boundaries are special cases: OK if same day, quite wrong otherwise
-	expect_equal(pred13_sd$getForecast(1), c( rep(1,11), rep(2,13) ) )
-	expect_equal(pred13_dd$getForecast(1), c( rep(1,11), rep(-5,13) ) )
-	expect_equal(pred13_sd$getForecast(7), c( rep(7,11), rep(1,13) ) )
-	expect_equal(pred13_dd$getForecast(7), c( rep(7,11), rep(8,13) ) )
 
 	#A few extra checks
-	expect_equal( pred00_sd$getIndexInData(3), dateIndexToInteger("2007-04-03",data00) )
-	expect_equal( pred00_dd$getIndexInData(6), dateIndexToInteger("2007-04-06",data00) )
-	expect_equal( pred13_sd$getIndexInData(3), dateIndexToInteger("2007-04-03",data13) )
-	expect_equal( pred13_dd$getIndexInData(6), dateIndexToInteger("2007-04-06",data13) )
+	expect_equal( pred00_sd$getIndexInData(3), dateIndexToInteger("2007-04-04",data_p) )
+	expect_equal( pred00_dd$getIndexInData(6), dateIndexToInteger("2007-04-07",data_p) )
+	expect_equal( pred13_sd$getIndexInData(3), dateIndexToInteger("2007-04-04",data_p) )
+	expect_equal( pred13_dd$getIndexInData(6), dateIndexToInteger("2007-04-07",data_p) )
 })
 
 test_that("Neighbors method behave as expected",
 {
 	#Situation A: +Zero; correct if jump, wrong otherwise
-	pred00 = computeForecast(data00, indices, "Neighbors", "Zero", Inf, 24,
+	pred00 = computeForecast(data_p, indices, "Neighbors", "Zero", 1, Inf, 24,
 		simtype="mix", local=FALSE)
 	for (i in 1:7)
 		expect_equal(pred00$getForecast(i), rep(pred_order[i],24))
 
-	pred13 = computeForecast(data13, indices, "Persistence", "Zero", Inf, 24,
+	pred13 = computeForecast(data_p, indices, "Persistence", "Zero", 14, Inf, 24,
 		simtype="mix", local=FALSE)
 	for (i in 1:7)
-		expect_equal(pred13$getForecast(i), c( rep(i,11), rep(i%%7+1,13) ) )
+		expect_equal(pred13$getForecast(i), rep(i,24) )
 
 	#Situation B: +Neighbors == too difficult to eval in a unit test
-#	pred00 = computeForecast(data00, indices, "Neighbors", "Neighbors", Inf, 24,
+#	pred00 = computeForecast(data_p, indices, "Neighbors", "Neighbors", 1, Inf, 24,
 #		simtype="endo", local=FALSE)
 #	jumps = ...
 #	for (i in 1:7)
 #		expect_equal(pred00$getForecast(i), rep(pred_order[i]+jumps[i],24))
-#	pred13 = computeForecast(data13, indices, "Neighbors", "Neighbors", Inf, 24,
+#	pred13 = computeForecast(data_p, indices, "Neighbors", "Neighbors", 14, Inf, 24,
 #		simtype="endo", local=FALSE)
 #	for (i in 1:7)
 #		expect_equal(pred13$getForecast(i), c( rep(i,11), rep(i%%7+1,13) ) )
 
 	#A few extra checks
-	expect_equal( pred00$getIndexInData(1), dateIndexToInteger("2007-04-01",data00) )
-	expect_equal( pred00$getIndexInData(4), dateIndexToInteger("2007-04-04",data00) )
-	expect_equal( pred13$getIndexInData(1), dateIndexToInteger("2007-04-01",data13) )
-	expect_equal( pred13$getIndexInData(4), dateIndexToInteger("2007-04-04",data13) )
+	expect_equal( pred00$getIndexInData(1), dateIndexToInteger("2007-04-02",data_p) )
+	expect_equal( pred00$getIndexInData(4), dateIndexToInteger("2007-04-05",data_p) )
+	expect_equal( pred13$getIndexInData(1), dateIndexToInteger("2007-04-02",data_p) )
+	expect_equal( pred13$getIndexInData(4), dateIndexToInteger("2007-04-05",data_p) )
 })
diff --git a/pkg/tests/testthat/test-computeFilaments.R b/pkg/tests/testthat/test-computeFilaments.R
index 7e1cafa..6ddd2c5 100644
--- a/pkg/tests/testthat/test-computeFilaments.R
+++ b/pkg/tests/testthat/test-computeFilaments.R
@@ -4,15 +4,15 @@ test_that("output is as expected on simulated series",
 {
 	data = getDataTest(150)
 
-	# index 143 : serie type 2
-	pred = computeForecast(data, 143, "Neighbors", "Zero",
+	# index 144-1 == 143 : serie type 2
+	pred = computeForecast(data, 144, "Neighbors", "Zero", predict_from=8,
 		horizon=length(data$getSerie(1)), simtype="endo", local=FALSE, h_window=1)
-	f = computeFilaments(data, pred, 1, limit=60, plot=FALSE)
+	f = computeFilaments(data, pred, 1, 8, limit=60, plot=FALSE)
 
 	# Expected output: 50-3-10 series of type 2, then 23 series of type 3 (closest next)
 	expect_identical(length(f$neighb_indices), as.integer(60))
 	expect_identical(length(f$colors), as.integer(60))
-	expect_equal(f$index, 143)
+	expect_equal(f$index, 144)
 	expect_true(all(I(f$neighb_indices) >= 2))
 	for (i in 1:37)
 	{
@@ -27,16 +27,16 @@ test_that("output is as expected on simulated series",
 	expect_match(f$colors[1], "#1*")
 	expect_match(f$colors[38], "#E*")
 
-	# index 142 : serie type 1
-	pred = computeForecast(data, 142, "Neighbors", "Zero",
+	# index 143-1 == 142 : serie type 1
+	pred = computeForecast(data, 143, "Neighbors", "Zero", predict_from=8,
 		horizon=length(data$getSerie(1)), simtype="endo", local=FALSE, h_window=1)
-	f = computeFilaments(data, pred, 1, limit=50, plot=FALSE)
+	f = computeFilaments(data, pred, 1, 8, limit=50, plot=FALSE)
 
 	# Expected output: 50-10-3 series of type 1, then 13 series of type 3 (closest next)
 	# NOTE: -10 because only past days with no-NAs tomorrow => exclude type 1 in [60,90[
 	expect_identical(length(f$neighb_indices), as.integer(50))
 	expect_identical(length(f$colors), as.integer(50))
-	expect_equal(f$index, 142)
+	expect_equal(f$index, 143)
 	expect_true(all(I(f$neighb_indices) != 2))
 	for (i in 1:37)
 	{
diff --git a/reports/PackageR.gj b/reports/PackageR.gj
index d62dc36..567bfd6 100644
--- a/reports/PackageR.gj
+++ b/reports/PackageR.gj
@@ -25,18 +25,17 @@ ts_data <- read.csv(system.file("extdata","pm10_mesures_H_loc.csv",
 	package="talweg"))
 exo_data <- read.csv(system.file("extdata","meteo_extra_noNAs.csv",
 	package="talweg"))
-data <- getData(ts_data, exo_data, input_tz="GMT",
-	date_format="%d/%m/%Y %H:%M", working_tz="GMT",
-	predict_at=7, limit=120)
+data <- getData(ts_data, exo_data,
+	date_format="%d/%m/%Y %H:%M", limit=120)
 # Plus de détails à la section 1 ci-après.
 
 # Prédiction de 10 courbes (jours 102 à 111)
-pred <- computeForecast(data, 101:110, "Persistence", "Zero", memory=50,
-	horizon=12, ncores=1)
+pred <- computeForecast(data, 101:110, "Persistence", "Zero",
+	predict_from=8, memory=50, horizon=24, ncores=1)
 # Plus de détails à la section 2 ci-après.
 
 # Calcul des erreurs (sur un horizon arbitraire <= horizon de prédiction)
-err <- computeError(data, pred, horizon=6)
+err <- computeError(data, pred, predict_from=8, horizon=20)
 # Plus de détails à la section 3 ci-après.
 
 # Puis voir ?plotError et les autres plot dans le paragraphe 'seealso'
@@ -51,14 +50,9 @@ première colonne contient les heures, la seconde les valeurs.
 première colonne contient les jours, les $m$ suivantes les variables mesurées pour ce
 jour, et les $m$ dernières les variables prédites pour ce même jour. Dans notre cas $m=4$
 : pression, température, gradient de température, vitesse du vent.
- 3. **input_tz** : zone horaire pour ts_data (défaut : "GMT").
- 4. **date_format** : format des heures dans ts_data (défaut : "%d/%m/%Y %H:%M", format
-du fichier transmis par Michel).
- 5. **working_tz** : zone horaire dans laquelle on souhaite travailler avec les données
-(défaut : "GMT").
- 6. **predict_at** : heure à laquelle s'effectue la prévision $-$ et donc dernière heure
-d'un bloc de 24h, relativement à working_tz. data`$`getSerie(3) renvoit ainsi les 24
-valeurs de 8h à 7h pour le $3^{eme}$ bloc de 24h présent dans le jeu de données.
+ 3. **date_format** : format des heures dans ts_data (défaut : "%d/%m/%Y %H:%M", format
+du fichier transmis par Michel Bobbia).
+ 4. **limit** : nombre de séries à récupérer.
 -----r
 print(data)
 #?Data
@@ -76,10 +70,11 @@ blocs de 24h) ; peut être donnée sous forme d'un vecteur de dates ou d'entiers
 ?computeForecast
  5. **memory** : le nombre de jours à prendre en compte dans le passé pour chaque
 prévision (par défaut : Inf, c'est-à-dire tout l'historique pris en compte).
- 6. **horizon** : le nombre d'heures à prédire ; par défaut "data`$`getStdHorizon()",
-c'est-à-dire le nombre d'heures restantes à partir de l'instant de prévision + 1 jusqu'à
-minuit (17 pour predict_at=7 par exemple).
- 7. **ncores** : le nombre de processus parallèles (utiliser 1 pour une exécution
+ 6. **predict_from** : première heure de prévision. Les séries prévues démarrent
+cependant toutes à 1h du matin (en reprenant les premières valeurs connues).
+ 7. **horizon** : dernière heure de prévision ; maximum 24 == minuit (valeur par défaut).
+pred`$`getForecast(i) retourne une journée complète de 01:00 à 00:00 si horizon=24.
+ 8. **ncores** : le nombre de processus parallèles (utiliser 1 pour une exécution
 séquentielle)
 -----r
 print(pred)
@@ -91,9 +86,10 @@ Les arguments de cette fonction sont, dans l'ordre :
 
  1. **data** : le jeu de données renvoyé par getData()
  2. **pred** : les prédictions renvoyées par computeForecast()
- 3. **horizon** : le nombre d'heures à considérer pour le calcul de l'erreur ; doit être
-inférieur ou égal à l'horizon utilisé pour la prédiction (même valeur par défaut :
-"data`$`getStdHorizon()")
+ 3. **predict_from** : première heure de prévision ; peut être différente de l'analogue
+dans l'appel à *computeForecast()*.
+ 4. **horizon** : dernière heure de prévision à considérer pour le calcul de l'erreur ;
+inférieure ou égale à la valeur de l'argument analogue dans *computeForecast()*
 -----r
 summary(err)
 summary(err$abs)