From 8b28401096c8f1b95a4d83b34b47548ae1b2a425 Mon Sep 17 00:00:00 2001
From: devijvee <emilie.devijver@univ-grenoble-alpes.fr>
Date: Sat, 14 Mar 2020 18:31:27 +0100
Subject: [PATCH] update Emilie

---
 TODO               | 14 ++++++++++----
 pkg/R/generateXY.R | 12 ++++++------
 2 files changed, 16 insertions(+), 10 deletions(-)

diff --git a/TODO b/TODO
index d9f02eb..c662bec 100644
--- a/TODO
+++ b/TODO
@@ -1,12 +1,18 @@
-n = 100; m = 70; p = 5
+n = 50; m = 10; p = 5
 X = matrix(runif(n*p, -10, 10), nrow=n)
 Y = matrix(runif(n*m, -5, 15), nrow=n)
-
-V1 = valse::valse(X, Y, fast=FALSE)
+beta = array(0, dim=c(p,m,2))
+beta[,,1] = 1
+beta[,,2] = 2
+data = generateXY(n, c(0.4,0.6), rep(0,p), beta, diag(0.5, p), diag(0.5, m))
+X = data$X
+Y = data$Y
+class = data$class
+V1 = runValse(X, Y, fast=FALSE)
 Error in while (!pi2AllPositive) { : 
   missing value where TRUE/FALSE needed
 
-V2 = valse::valse(X, Y, fast=TRUE)
+V2 = runValse(X, Y, fast=TRUE)
 list()
 Error in out[[ind_uniq[l]]] : 
   attempt to select less than one element in get1index
diff --git a/pkg/R/generateXY.R b/pkg/R/generateXY.R
index d2e00ef..fde4b0f 100644
--- a/pkg/R/generateXY.R
+++ b/pkg/R/generateXY.R
@@ -3,26 +3,26 @@
 #' Generate a sample of (X,Y) of size n
 #'
 #' @param n sample size
-#' @param p proportion for each cluster
+#' @param prop proportion for each cluster
 #' @param meanX matrix of group means for covariates (of size p)
 #' @param covX covariance for covariates (of size p*p)
 #' @param beta regression matrix, of size p*m*k
-#' @param covY covariance for the response vector (of size m*m*K)
+#' @param covY covariance for the response vector (of size m*m)
 #'
 #' @return list with X and Y
 #'
 #' @export
-generateXY <- function(n, p, meanX, beta, covX, covY)
+generateXY <- function(n, prop, meanX, beta, covX, covY)
 {
   p <- dim(covX)[1]
   m <- dim(covY)[1]
-  k <- dim(covY)[3]
+  k <- dim(beta)[3]
 
   X <- matrix(nrow = 0, ncol = p)
   Y <- matrix(nrow = 0, ncol = m)
 
   # random generation of the size of each population in X~Y (unordered)
-  sizePop <- stats::rmultinom(1, n, p)
+  sizePop <- stats::rmultinom(1, n, prop)
   class <- c() #map i in 1:n --> index of class in 1:k
 
   for (i in 1:k)
@@ -31,7 +31,7 @@ generateXY <- function(n, p, meanX, beta, covX, covY)
     newBlockX <- MASS::mvrnorm(sizePop[i], meanX, covX)
     X <- rbind(X, newBlockX)
     Y <- rbind(Y, t(apply(newBlockX, 1, function(row) MASS::mvrnorm(1, row %*%
-      beta[, , i], covY[, , i]))))
+      beta[, , i], covY[,]))))
   }
 
   shuffle <- sample(n)
-- 
2.44.0