From: Benjamin Auder <benjamin.auder@somewhere> Date: Wed, 10 Apr 2019 14:42:39 +0000 (+0200) Subject: Fixing computer play X-Git-Url: https://git.auder.net/variants/Chakart/%7B%7B%20asset%28%27mixstore/images/scripts/R.css?a=commitdiff_plain;h=1c9f093dad69e4c7b6d2b42cb5e0bd3bc7224ec9;p=vchess.git Fixing computer play --- diff --git a/client/src/base_rules.js b/client/src/base_rules.js index bb2edc43..087b4f5b 100644 --- a/client/src/base_rules.js +++ b/client/src/base_rules.js @@ -6,1317 +6,1318 @@ import { random, sample, shuffle } from "@/utils/alea"; export const PiPo = class PiPo //Piece+Position { - // o: {piece[p], color[c], posX[x], posY[y]} - constructor(o) - { - this.p = o.p; - this.c = o.c; - this.x = o.x; - this.y = o.y; - } + // o: {piece[p], color[c], posX[x], posY[y]} + constructor(o) + { + this.p = o.p; + this.c = o.c; + this.x = o.x; + this.y = o.y; + } } // TODO: for animation, moves should contains "moving" and "fading" maybe... export const Move = class Move { - // o: {appear, vanish, [start,] [end,]} - // appear,vanish = arrays of PiPo - // start,end = coordinates to apply to trigger move visually (think castle) - constructor(o) - { - this.appear = o.appear; - this.vanish = o.vanish; - this.start = !!o.start ? o.start : {x:o.vanish[0].x, y:o.vanish[0].y}; - this.end = !!o.end ? o.end : {x:o.appear[0].x, y:o.appear[0].y}; - } + // o: {appear, vanish, [start,] [end,]} + // appear,vanish = arrays of PiPo + // start,end = coordinates to apply to trigger move visually (think castle) + constructor(o) + { + this.appear = o.appear; + this.vanish = o.vanish; + this.start = !!o.start ? o.start : {x:o.vanish[0].x, y:o.vanish[0].y}; + this.end = !!o.end ? o.end : {x:o.appear[0].x, y:o.appear[0].y}; + } } // NOTE: x coords = top to bottom; y = left to right (from white player perspective) export const ChessRules = class ChessRules { - ////////////// - // MISC UTILS - - static get HasFlags() { return true; } //some variants don't have flags - - static get HasEnpassant() { return true; } //some variants don't have ep. - - // Path to pieces - static getPpath(b) - { - return b; //usual pieces in pieces/ folder - } - - // Turn "wb" into "B" (for FEN) - static board2fen(b) - { - return b[0]=='w' ? b[1].toUpperCase() : b[1]; - } - - // Turn "p" into "bp" (for board) - static fen2board(f) - { - return f.charCodeAt()<=90 ? "w"+f.toLowerCase() : "b"+f; - } - - // Check if FEN describe a position - static IsGoodFen(fen) - { - const fenParsed = V.ParseFen(fen); - // 1) Check position - if (!V.IsGoodPosition(fenParsed.position)) - return false; - // 2) Check turn - if (!fenParsed.turn || !V.IsGoodTurn(fenParsed.turn)) - return false; - // 3) Check moves count - if (!fenParsed.movesCount || !(parseInt(fenParsed.movesCount) >= 0)) - return false; - // 4) Check flags - if (V.HasFlags && (!fenParsed.flags || !V.IsGoodFlags(fenParsed.flags))) - return false; - // 5) Check enpassant - if (V.HasEnpassant && - (!fenParsed.enpassant || !V.IsGoodEnpassant(fenParsed.enpassant))) - { - return false; - } - return true; - } - - // Is position part of the FEN a priori correct? - static IsGoodPosition(position) - { - if (position.length == 0) - return false; - const rows = position.split("/"); - if (rows.length != V.size.x) - return false; - for (let row of rows) - { - let sumElts = 0; - for (let i=0; i<row.length; i++) - { - if (V.PIECES.includes(row[i].toLowerCase())) - sumElts++; - else - { - const num = parseInt(row[i]); - if (isNaN(num)) - return false; - sumElts += num; - } - } - if (sumElts != V.size.y) - return false; - } - return true; - } - - // For FEN checking - static IsGoodTurn(turn) - { - return ["w","b"].includes(turn); - } - - // For FEN checking - static IsGoodFlags(flags) - { - return !!flags.match(/^[01]{4,4}$/); - } - - static IsGoodEnpassant(enpassant) - { - if (enpassant != "-") - { - const ep = V.SquareToCoords(fenParsed.enpassant); - if (isNaN(ep.x) || !V.OnBoard(ep)) - return false; - } - return true; - } - - // 3 --> d (column number to letter) - static CoordToColumn(colnum) - { - return String.fromCharCode(97 + colnum); - } - - // d --> 3 (column letter to number) - static ColumnToCoord(column) - { - return column.charCodeAt(0) - 97; - } - - // a4 --> {x:3,y:0} - static SquareToCoords(sq) - { - return { - // NOTE: column is always one char => max 26 columns - // row is counted from black side => subtraction - x: V.size.x - parseInt(sq.substr(1)), - y: sq[0].charCodeAt() - 97 - }; - } - - // {x:0,y:4} --> e8 - static CoordsToSquare(coords) - { - return V.CoordToColumn(coords.y) + (V.size.x - coords.x); - } - - // Aggregates flags into one object - aggregateFlags() - { - return this.castleFlags; - } - - // Reverse operation - disaggregateFlags(flags) - { - this.castleFlags = flags; - } - - // En-passant square, if any - getEpSquare(moveOrSquare) - { - if (!moveOrSquare) - return undefined; - if (typeof moveOrSquare === "string") - { - const square = moveOrSquare; - if (square == "-") - return undefined; - return V.SquareToCoords(square); - } - // Argument is a move: - const move = moveOrSquare; - const [sx,sy,ex] = [move.start.x,move.start.y,move.end.x]; - // TODO: next conditions are first for Atomic, and third for Checkered - if (move.appear.length > 0 && move.appear[0].p == V.PAWN && ["w","b"].includes(move.appear[0].c) && Math.abs(sx - ex) == 2) - { - return { - x: (sx + ex)/2, - y: sy - }; - } - return undefined; //default - } - - // Can thing on square1 take thing on square2 - canTake([x1,y1], [x2,y2]) - { - return this.getColor(x1,y1) !== this.getColor(x2,y2); - } - - // Is (x,y) on the chessboard? - static OnBoard(x,y) - { - return (x>=0 && x<V.size.x && y>=0 && y<V.size.y); - } - - // Used in interface: 'side' arg == player color - canIplay(side, [x,y]) - { - return (this.turn == side && this.getColor(x,y) == side); - } - - // On which squares is color under check ? (for interface) - getCheckSquares(color) - { - return this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]) - ? [JSON.parse(JSON.stringify(this.kingPos[color]))] //need to duplicate! - : []; - } - - ///////////// - // FEN UTILS - - // Setup the initial random (assymetric) position - static GenRandInitFen() - { - let pieces = { "w": new Array(8), "b": new Array(8) }; - // Shuffle pieces on first and last rank - for (let c of ["w","b"]) - { - let positions = ArrayFun.range(8); - - // Get random squares for bishops - let randIndex = 2 * random(4); - const bishop1Pos = positions[randIndex]; - // The second bishop must be on a square of different color - let randIndex_tmp = 2 * random(4) + 1; - const bishop2Pos = positions[randIndex_tmp]; - // Remove chosen squares - positions.splice(Math.max(randIndex,randIndex_tmp), 1); - positions.splice(Math.min(randIndex,randIndex_tmp), 1); - - // Get random squares for knights - randIndex = random(6); - const knight1Pos = positions[randIndex]; - positions.splice(randIndex, 1); - randIndex = random(5); - const knight2Pos = positions[randIndex]; - positions.splice(randIndex, 1); - - // Get random square for queen - randIndex = random(4); - const queenPos = positions[randIndex]; - positions.splice(randIndex, 1); - - // Rooks and king positions are now fixed, - // because of the ordering rook-king-rook - const rook1Pos = positions[0]; - const kingPos = positions[1]; - const rook2Pos = positions[2]; - - // Finally put the shuffled pieces in the board array - pieces[c][rook1Pos] = 'r'; - pieces[c][knight1Pos] = 'n'; - pieces[c][bishop1Pos] = 'b'; - pieces[c][queenPos] = 'q'; - pieces[c][kingPos] = 'k'; - pieces[c][bishop2Pos] = 'b'; - pieces[c][knight2Pos] = 'n'; - pieces[c][rook2Pos] = 'r'; - } - return pieces["b"].join("") + - "/pppppppp/8/8/8/8/PPPPPPPP/" + - pieces["w"].join("").toUpperCase() + - " w 0 1111 -"; //add turn + flags + enpassant - } - - // "Parse" FEN: just return untransformed string data - static ParseFen(fen) - { - const fenParts = fen.split(" "); - let res = - { - position: fenParts[0], - turn: fenParts[1], - movesCount: fenParts[2], - }; - let nextIdx = 3; - if (V.HasFlags) - Object.assign(res, {flags: fenParts[nextIdx++]}); - if (V.HasEnpassant) - Object.assign(res, {enpassant: fenParts[nextIdx]}); - return res; - } - - // Return current fen (game state) - getFen() - { - return this.getBaseFen() + " " + - this.getTurnFen() + " " + this.movesCount + - (V.HasFlags ? (" " + this.getFlagsFen()) : "") + - (V.HasEnpassant ? (" " + this.getEnpassantFen()) : ""); - } - - // Position part of the FEN string - getBaseFen() - { - let position = ""; - for (let i=0; i<V.size.x; i++) - { - let emptyCount = 0; - for (let j=0; j<V.size.y; j++) - { - if (this.board[i][j] == V.EMPTY) - emptyCount++; - else - { - if (emptyCount > 0) - { - // Add empty squares in-between - position += emptyCount; - emptyCount = 0; - } - position += V.board2fen(this.board[i][j]); - } - } - if (emptyCount > 0) - { - // "Flush remainder" - position += emptyCount; - } - if (i < V.size.x - 1) - position += "/"; //separate rows - } - return position; - } - - getTurnFen() - { - return this.turn; - } - - // Flags part of the FEN string - getFlagsFen() - { - let flags = ""; - // Add castling flags - for (let i of ['w','b']) - { - for (let j=0; j<2; j++) - flags += (this.castleFlags[i][j] ? '1' : '0'); - } - return flags; - } - - // Enpassant part of the FEN string - getEnpassantFen() - { - const L = this.epSquares.length; - if (!this.epSquares[L-1]) - return "-"; //no en-passant - return V.CoordsToSquare(this.epSquares[L-1]); - } - - // Turn position fen into double array ["wb","wp","bk",...] - static GetBoard(position) - { - const rows = position.split("/"); - let board = ArrayFun.init(V.size.x, V.size.y, ""); - for (let i=0; i<rows.length; i++) - { - let j = 0; - for (let indexInRow = 0; indexInRow < rows[i].length; indexInRow++) - { - const character = rows[i][indexInRow]; - const num = parseInt(character); - if (!isNaN(num)) - j += num; //just shift j - else //something at position i,j - board[i][j++] = V.fen2board(character); - } - } - return board; - } - - // Extract (relevant) flags from fen - setFlags(fenflags) - { - // white a-castle, h-castle, black a-castle, h-castle - this.castleFlags = {'w': [true,true], 'b': [true,true]}; - if (!fenflags) - return; - for (let i=0; i<4; i++) - this.castleFlags[i < 2 ? 'w' : 'b'][i%2] = (fenflags.charAt(i) == '1'); - } - - ////////////////// - // INITIALIZATION - - // Fen string fully describes the game state - constructor(fen) - { - const fenParsed = V.ParseFen(fen); - this.board = V.GetBoard(fenParsed.position); - this.turn = fenParsed.turn[0]; //[0] to work with MarseilleRules - this.movesCount = parseInt(fenParsed.movesCount); - this.setOtherVariables(fen); - } - - // Scan board for kings and rooks positions - scanKingsRooks(fen) - { - this.INIT_COL_KING = {'w':-1, 'b':-1}; - this.INIT_COL_ROOK = {'w':[-1,-1], 'b':[-1,-1]}; - this.kingPos = {'w':[-1,-1], 'b':[-1,-1]}; //squares of white and black king - const fenRows = V.ParseFen(fen).position.split("/"); - for (let i=0; i<fenRows.length; i++) - { - let k = 0; //column index on board - for (let j=0; j<fenRows[i].length; j++) - { - switch (fenRows[i].charAt(j)) - { - case 'k': - this.kingPos['b'] = [i,k]; - this.INIT_COL_KING['b'] = k; - break; - case 'K': - this.kingPos['w'] = [i,k]; - this.INIT_COL_KING['w'] = k; - break; - case 'r': - if (this.INIT_COL_ROOK['b'][0] < 0) - this.INIT_COL_ROOK['b'][0] = k; - else - this.INIT_COL_ROOK['b'][1] = k; - break; - case 'R': - if (this.INIT_COL_ROOK['w'][0] < 0) - this.INIT_COL_ROOK['w'][0] = k; - else - this.INIT_COL_ROOK['w'][1] = k; - break; - default: - const num = parseInt(fenRows[i].charAt(j)); - if (!isNaN(num)) - k += (num-1); - } - k++; - } - } - } - - // Some additional variables from FEN (variant dependant) - setOtherVariables(fen) - { - // Set flags and enpassant: - const parsedFen = V.ParseFen(fen); - if (V.HasFlags) - this.setFlags(parsedFen.flags); - if (V.HasEnpassant) - { - const epSq = parsedFen.enpassant != "-" - ? V.SquareToCoords(parsedFen.enpassant) - : undefined; - this.epSquares = [ epSq ]; - } - // Search for king and rooks positions: - this.scanKingsRooks(fen); - } - - ///////////////////// - // GETTERS & SETTERS - - static get size() - { - return {x:8, y:8}; - } - - // Color of thing on suqare (i,j). 'undefined' if square is empty - getColor(i,j) - { - return this.board[i][j].charAt(0); - } - - // Piece type on square (i,j). 'undefined' if square is empty - getPiece(i,j) - { - return this.board[i][j].charAt(1); - } - - // Get opponent color - static GetOppCol(color) - { - return (color=="w" ? "b" : "w"); - } - - // Get next color (for compatibility with 3 and 4 players games) - static GetNextCol(color) - { - return V.GetOppCol(color); - } - - // Pieces codes (for a clearer code) - static get PAWN() { return 'p'; } - static get ROOK() { return 'r'; } - static get KNIGHT() { return 'n'; } - static get BISHOP() { return 'b'; } - static get QUEEN() { return 'q'; } - static get KING() { return 'k'; } - - // For FEN checking: - static get PIECES() - { - return [V.PAWN,V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN,V.KING]; - } - - // Empty square - static get EMPTY() { return ""; } - - // Some pieces movements - static get steps() - { - return { - 'r': [ [-1,0],[1,0],[0,-1],[0,1] ], - 'n': [ [-1,-2],[-1,2],[1,-2],[1,2],[-2,-1],[-2,1],[2,-1],[2,1] ], - 'b': [ [-1,-1],[-1,1],[1,-1],[1,1] ], - }; - } - - //////////////////// - // MOVES GENERATION - - // All possible moves from selected square (assumption: color is OK) - getPotentialMovesFrom([x,y]) - { - switch (this.getPiece(x,y)) - { - case V.PAWN: - return this.getPotentialPawnMoves([x,y]); - case V.ROOK: - return this.getPotentialRookMoves([x,y]); - case V.KNIGHT: - return this.getPotentialKnightMoves([x,y]); - case V.BISHOP: - return this.getPotentialBishopMoves([x,y]); - case V.QUEEN: - return this.getPotentialQueenMoves([x,y]); - case V.KING: - return this.getPotentialKingMoves([x,y]); - } - } - - // Build a regular move from its initial and destination squares. - // tr: transformation - getBasicMove([sx,sy], [ex,ey], tr) - { - let mv = new Move({ - appear: [ - new PiPo({ - x: ex, - y: ey, - c: !!tr ? tr.c : this.getColor(sx,sy), - p: !!tr ? tr.p : this.getPiece(sx,sy) - }) - ], - vanish: [ - new PiPo({ - x: sx, - y: sy, - c: this.getColor(sx,sy), - p: this.getPiece(sx,sy) - }) - ] - }); - - // The opponent piece disappears if we take it - if (this.board[ex][ey] != V.EMPTY) - { - mv.vanish.push( - new PiPo({ - x: ex, - y: ey, - c: this.getColor(ex,ey), - p: this.getPiece(ex,ey) - }) - ); - } - return mv; - } - - // Generic method to find possible moves of non-pawn pieces: - // "sliding or jumping" - getSlideNJumpMoves([x,y], steps, oneStep) - { - const color = this.getColor(x,y); - let moves = []; - outerLoop: - for (let step of steps) - { - let i = x + step[0]; - let j = y + step[1]; - while (V.OnBoard(i,j) && this.board[i][j] == V.EMPTY) - { - moves.push(this.getBasicMove([x,y], [i,j])); - if (oneStep !== undefined) - continue outerLoop; - i += step[0]; - j += step[1]; - } - if (V.OnBoard(i,j) && this.canTake([x,y], [i,j])) - moves.push(this.getBasicMove([x,y], [i,j])); - } - return moves; - } - - // What are the pawn moves from square x,y ? - getPotentialPawnMoves([x,y]) - { - const color = this.turn; - let moves = []; - const [sizeX,sizeY] = [V.size.x,V.size.y]; - const shiftX = (color == "w" ? -1 : 1); - const firstRank = (color == 'w' ? sizeX-1 : 0); - const startRank = (color == "w" ? sizeX-2 : 1); - const lastRank = (color == "w" ? 0 : sizeX-1); - const pawnColor = this.getColor(x,y); //can be different for checkered - - // NOTE: next condition is generally true (no pawn on last rank) - if (x+shiftX >= 0 && x+shiftX < sizeX) - { - const finalPieces = x + shiftX == lastRank - ? [V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN] - : [V.PAWN] - // One square forward - if (this.board[x+shiftX][y] == V.EMPTY) - { - for (let piece of finalPieces) - { - moves.push(this.getBasicMove([x,y], [x+shiftX,y], - {c:pawnColor,p:piece})); - } - // Next condition because pawns on 1st rank can generally jump - if ([startRank,firstRank].includes(x) - && this.board[x+2*shiftX][y] == V.EMPTY) - { - // Two squares jump - moves.push(this.getBasicMove([x,y], [x+2*shiftX,y])); - } - } - // Captures - for (let shiftY of [-1,1]) - { - if (y + shiftY >= 0 && y + shiftY < sizeY - && this.board[x+shiftX][y+shiftY] != V.EMPTY - && this.canTake([x,y], [x+shiftX,y+shiftY])) - { - for (let piece of finalPieces) - { - moves.push(this.getBasicMove([x,y], [x+shiftX,y+shiftY], - {c:pawnColor,p:piece})); - } - } - } - } - - if (V.HasEnpassant) - { - // En passant - const Lep = this.epSquares.length; - const epSquare = this.epSquares[Lep-1]; //always at least one element - if (!!epSquare && epSquare.x == x+shiftX && Math.abs(epSquare.y - y) == 1) - { - let enpassantMove = this.getBasicMove([x,y], [epSquare.x,epSquare.y]); - enpassantMove.vanish.push({ - x: x, - y: epSquare.y, - p: 'p', - c: this.getColor(x,epSquare.y) - }); - moves.push(enpassantMove); - } - } - - return moves; - } - - // What are the rook moves from square x,y ? - getPotentialRookMoves(sq) - { - return this.getSlideNJumpMoves(sq, V.steps[V.ROOK]); - } - - // What are the knight moves from square x,y ? - getPotentialKnightMoves(sq) - { - return this.getSlideNJumpMoves(sq, V.steps[V.KNIGHT], "oneStep"); - } - - // What are the bishop moves from square x,y ? - getPotentialBishopMoves(sq) - { - return this.getSlideNJumpMoves(sq, V.steps[V.BISHOP]); - } - - // What are the queen moves from square x,y ? - getPotentialQueenMoves(sq) - { - return this.getSlideNJumpMoves(sq, - V.steps[V.ROOK].concat(V.steps[V.BISHOP])); - } - - // What are the king moves from square x,y ? - getPotentialKingMoves(sq) - { - // Initialize with normal moves - let moves = this.getSlideNJumpMoves(sq, - V.steps[V.ROOK].concat(V.steps[V.BISHOP]), "oneStep"); - return moves.concat(this.getCastleMoves(sq)); - } - - getCastleMoves([x,y]) - { - const c = this.getColor(x,y); - if (x != (c=="w" ? V.size.x-1 : 0) || y != this.INIT_COL_KING[c]) - return []; //x isn't first rank, or king has moved (shortcut) - - // Castling ? - const oppCol = V.GetOppCol(c); - let moves = []; - let i = 0; - const finalSquares = [ [2,3], [V.size.y-2,V.size.y-3] ]; //king, then rook - castlingCheck: - for (let castleSide=0; castleSide < 2; castleSide++) //large, then small - { - if (!this.castleFlags[c][castleSide]) - continue; - // If this code is reached, rooks and king are on initial position - - // Nothing on the path of the king ? - // (And no checks; OK also if y==finalSquare) - let step = finalSquares[castleSide][0] < y ? -1 : 1; - for (i=y; i!=finalSquares[castleSide][0]; i+=step) - { - if (this.isAttacked([x,i], [oppCol]) || (this.board[x][i] != V.EMPTY && - // NOTE: next check is enough, because of chessboard constraints - (this.getColor(x,i) != c - || ![V.KING,V.ROOK].includes(this.getPiece(x,i))))) - { - continue castlingCheck; - } - } - - // Nothing on the path to the rook? - step = castleSide == 0 ? -1 : 1; - for (i = y + step; i != this.INIT_COL_ROOK[c][castleSide]; i += step) - { - if (this.board[x][i] != V.EMPTY) - continue castlingCheck; - } - const rookPos = this.INIT_COL_ROOK[c][castleSide]; - - // Nothing on final squares, except maybe king and castling rook? - for (i=0; i<2; i++) - { - if (this.board[x][finalSquares[castleSide][i]] != V.EMPTY && - this.getPiece(x,finalSquares[castleSide][i]) != V.KING && - finalSquares[castleSide][i] != rookPos) - { - continue castlingCheck; - } - } - - // If this code is reached, castle is valid - moves.push( new Move({ - appear: [ - new PiPo({x:x,y:finalSquares[castleSide][0],p:V.KING,c:c}), - new PiPo({x:x,y:finalSquares[castleSide][1],p:V.ROOK,c:c})], - vanish: [ - new PiPo({x:x,y:y,p:V.KING,c:c}), - new PiPo({x:x,y:rookPos,p:V.ROOK,c:c})], - end: Math.abs(y - rookPos) <= 2 - ? {x:x, y:rookPos} - : {x:x, y:y + 2 * (castleSide==0 ? -1 : 1)} - }) ); - } - - return moves; - } - - //////////////////// - // MOVES VALIDATION - - // For the interface: possible moves for the current turn from square sq - getPossibleMovesFrom(sq) - { - return this.filterValid( this.getPotentialMovesFrom(sq) ); - } - - // TODO: promotions (into R,B,N,Q) should be filtered only once - filterValid(moves) - { - if (moves.length == 0) - return []; - const color = this.turn; - return moves.filter(m => { - this.play(m); - const res = !this.underCheck(color); - this.undo(m); - return res; - }); - } - - // Search for all valid moves considering current turn - // (for engine and game end) - getAllValidMoves() - { - const color = this.turn; - const oppCol = V.GetOppCol(color); - let potentialMoves = []; - for (let i=0; i<V.size.x; i++) - { - for (let j=0; j<V.size.y; j++) - { - // Next condition "!= oppCol" to work with checkered variant - if (this.board[i][j] != V.EMPTY && this.getColor(i,j) != oppCol) - { - Array.prototype.push.apply(potentialMoves, - this.getPotentialMovesFrom([i,j])); - } - } - } - return this.filterValid(potentialMoves); - } - - // Stop at the first move found - atLeastOneMove() - { - const color = this.turn; - const oppCol = V.GetOppCol(color); - for (let i=0; i<V.size.x; i++) - { - for (let j=0; j<V.size.y; j++) - { - if (this.board[i][j] != V.EMPTY && this.getColor(i,j) != oppCol) - { - const moves = this.getPotentialMovesFrom([i,j]); - if (moves.length > 0) - { - for (let k=0; k<moves.length; k++) - { - if (this.filterValid([moves[k]]).length > 0) - return true; - } - } - } - } - } - return false; - } - - // Check if pieces of color in 'colors' are attacking (king) on square x,y - isAttacked(sq, colors) - { - return (this.isAttackedByPawn(sq, colors) - || this.isAttackedByRook(sq, colors) - || this.isAttackedByKnight(sq, colors) - || this.isAttackedByBishop(sq, colors) - || this.isAttackedByQueen(sq, colors) - || this.isAttackedByKing(sq, colors)); - } - - // Is square x,y attacked by 'colors' pawns ? - isAttackedByPawn([x,y], colors) - { - for (let c of colors) - { - let pawnShift = (c=="w" ? 1 : -1); - if (x+pawnShift>=0 && x+pawnShift<V.size.x) - { - for (let i of [-1,1]) - { - if (y+i>=0 && y+i<V.size.y && this.getPiece(x+pawnShift,y+i)==V.PAWN - && this.getColor(x+pawnShift,y+i)==c) - { - return true; - } - } - } - } - return false; - } - - // Is square x,y attacked by 'colors' rooks ? - isAttackedByRook(sq, colors) - { - return this.isAttackedBySlideNJump(sq, colors, V.ROOK, V.steps[V.ROOK]); - } - - // Is square x,y attacked by 'colors' knights ? - isAttackedByKnight(sq, colors) - { - return this.isAttackedBySlideNJump(sq, colors, - V.KNIGHT, V.steps[V.KNIGHT], "oneStep"); - } - - // Is square x,y attacked by 'colors' bishops ? - isAttackedByBishop(sq, colors) - { - return this.isAttackedBySlideNJump(sq, colors, V.BISHOP, V.steps[V.BISHOP]); - } - - // Is square x,y attacked by 'colors' queens ? - isAttackedByQueen(sq, colors) - { - return this.isAttackedBySlideNJump(sq, colors, V.QUEEN, - V.steps[V.ROOK].concat(V.steps[V.BISHOP])); - } - - // Is square x,y attacked by 'colors' king(s) ? - isAttackedByKing(sq, colors) - { - return this.isAttackedBySlideNJump(sq, colors, V.KING, - V.steps[V.ROOK].concat(V.steps[V.BISHOP]), "oneStep"); - } - - // Generic method for non-pawn pieces ("sliding or jumping"): - // is x,y attacked by a piece of color in array 'colors' ? - isAttackedBySlideNJump([x,y], colors, piece, steps, oneStep) - { - for (let step of steps) - { - let rx = x+step[0], ry = y+step[1]; - while (V.OnBoard(rx,ry) && this.board[rx][ry] == V.EMPTY && !oneStep) - { - rx += step[0]; - ry += step[1]; - } - if (V.OnBoard(rx,ry) && this.getPiece(rx,ry) === piece - && colors.includes(this.getColor(rx,ry))) - { - return true; - } - } - return false; - } - - // Is color under check after his move ? - underCheck(color) - { - return this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]); - } - - ///////////////// - // MOVES PLAYING - - // Apply a move on board - static PlayOnBoard(board, move) - { - for (let psq of move.vanish) - board[psq.x][psq.y] = V.EMPTY; - for (let psq of move.appear) - board[psq.x][psq.y] = psq.c + psq.p; - } - // Un-apply the played move - static UndoOnBoard(board, move) - { - for (let psq of move.appear) - board[psq.x][psq.y] = V.EMPTY; - for (let psq of move.vanish) - board[psq.x][psq.y] = psq.c + psq.p; - } - - // After move is played, update variables + flags - updateVariables(move) - { - let piece = undefined; - let c = undefined; - if (move.vanish.length >= 1) - { - // Usual case, something is moved - piece = move.vanish[0].p; - c = move.vanish[0].c; - } - else - { - // Crazyhouse-like variants - piece = move.appear[0].p; - c = move.appear[0].c; - } - if (c == "c") //if (!["w","b"].includes(c)) - { - // 'c = move.vanish[0].c' doesn't work for Checkered - c = V.GetOppCol(this.turn); - } - const firstRank = (c == "w" ? V.size.x-1 : 0); - - // Update king position + flags - if (piece == V.KING && move.appear.length > 0) - { - this.kingPos[c][0] = move.appear[0].x; - this.kingPos[c][1] = move.appear[0].y; - if (V.HasFlags) - this.castleFlags[c] = [false,false]; - return; - } - if (V.HasFlags) - { - // Update castling flags if rooks are moved - const oppCol = V.GetOppCol(c); - const oppFirstRank = (V.size.x-1) - firstRank; - if (move.start.x == firstRank //our rook moves? - && this.INIT_COL_ROOK[c].includes(move.start.y)) - { - const flagIdx = (move.start.y == this.INIT_COL_ROOK[c][0] ? 0 : 1); - this.castleFlags[c][flagIdx] = false; - } - else if (move.end.x == oppFirstRank //we took opponent rook? - && this.INIT_COL_ROOK[oppCol].includes(move.end.y)) - { - const flagIdx = (move.end.y == this.INIT_COL_ROOK[oppCol][0] ? 0 : 1); - this.castleFlags[oppCol][flagIdx] = false; - } - } - } - - // After move is undo-ed *and flags resetted*, un-update other variables - // TODO: more symmetry, by storing flags increment in move (?!) - unupdateVariables(move) - { - // (Potentially) Reset king position - const c = this.getColor(move.start.x,move.start.y); - if (this.getPiece(move.start.x,move.start.y) == V.KING) - this.kingPos[c] = [move.start.x, move.start.y]; - } - - play(move) - { - // DEBUG: -// if (!this.states) this.states = []; -// const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen(); -// this.states.push(stateFen); - - if (V.HasFlags) - move.flags = JSON.stringify(this.aggregateFlags()); //save flags (for undo) - if (V.HasEnpassant) - this.epSquares.push( this.getEpSquare(move) ); - if (!move.color) - move.color = this.turn; //for interface - V.PlayOnBoard(this.board, move); - this.turn = V.GetOppCol(this.turn); - this.movesCount++; - this.updateVariables(move); - } - - undo(move) - { - if (V.HasEnpassant) - this.epSquares.pop(); - if (V.HasFlags) - this.disaggregateFlags(JSON.parse(move.flags)); - V.UndoOnBoard(this.board, move); - this.turn = V.GetOppCol(this.turn); - this.movesCount--; - this.unupdateVariables(move); - - // DEBUG: -// const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen(); -// if (stateFen != this.states[this.states.length-1]) debugger; -// this.states.pop(); - } - - /////////////// - // END OF GAME - - // What is the score ? (Interesting if game is over) - getCurrentScore() - { - if (this.atLeastOneMove()) // game not over - return "*"; - - // Game over - const color = this.turn; - // No valid move: stalemate or checkmate? - if (!this.isAttacked(this.kingPos[color], [V.GetOppCol(color)])) - return "1/2"; - // OK, checkmate - return (color == "w" ? "0-1" : "1-0"); - } - - /////////////// - // ENGINE PLAY - - // Pieces values - static get VALUES() - { - return { - 'p': 1, - 'r': 5, - 'n': 3, - 'b': 3, - 'q': 9, - 'k': 1000 - }; - } - - // "Checkmate" (unreachable eval) - static get INFINITY() { return 9999; } - - // At this value or above, the game is over - static get THRESHOLD_MATE() { return V.INFINITY; } - - // Search depth: 2 for high branching factor, 4 for small (Loser chess, eg.) - static get SEARCH_DEPTH() { return 3; } - - // Assumption: at least one legal move - // NOTE: works also for extinction chess because depth is 3... - getComputerMove() - { - const maxeval = V.INFINITY; - const color = this.turn; - // Some variants may show a bigger moves list to the human (Switching), - // thus the argument "computer" below (which is generally ignored) - let moves1 = this.getAllValidMoves("computer"); - - // Can I mate in 1 ? (for Magnetic & Extinction) - for (let i of shuffle(ArrayFun.range(moves1.length))) - { - this.play(moves1[i]); - let finish = (Math.abs(this.evalPosition()) >= V.THRESHOLD_MATE); - if (!finish) - { - const score = this.getCurrentScore(); - if (["1-0","0-1"].includes(score)) - finish = true; - } - this.undo(moves1[i]); - if (finish) - return moves1[i]; - } - - // Rank moves using a min-max at depth 2 - for (let i=0; i<moves1.length; i++) - { - // Initial self evaluation is very low: "I'm checkmated" - moves1[i].eval = (color=="w" ? -1 : 1) * maxeval; - this.play(moves1[i]); - const score1 = this.getCurrentScore(); - let eval2 = undefined; - if (score1 == "*") - { - // Initial enemy evaluation is very low too, for him - eval2 = (color=="w" ? 1 : -1) * maxeval; - // Second half-move: - let moves2 = this.getAllValidMoves("computer"); - for (let j=0; j<moves2.length; j++) - { - this.play(moves2[j]); - const score2 = this.getCurrentScore(); - const evalPos = score2 == "*" - ? this.evalPosition() - : (score2=="1/2" ? 0 : (score2=="1-0" ? 1 : -1) * maxeval); - if ((color == "w" && evalPos < eval2) - || (color=="b" && evalPos > eval2)) - { - eval2 = evalPos; - } - this.undo(moves2[j]); - } - } - else - eval2 = (score1=="1/2" ? 0 : (score1=="1-0" ? 1 : -1) * maxeval); - if ((color=="w" && eval2 > moves1[i].eval) - || (color=="b" && eval2 < moves1[i].eval)) - { - moves1[i].eval = eval2; - } - this.undo(moves1[i]); - } - moves1.sort( (a,b) => { return (color=="w" ? 1 : -1) * (b.eval - a.eval); }); - - let candidates = [0]; //indices of candidates moves - for (let j=1; j<moves1.length && moves1[j].eval == moves1[0].eval; j++) - candidates.push(j); - let currentBest = moves1[sample(candidates)]; - - // From here, depth >= 3: may take a while, so we control time - const timeStart = Date.now(); - - // Skip depth 3+ if we found a checkmate (or if we are checkmated in 1...) - if (V.SEARCH_DEPTH >= 3 && Math.abs(moves1[0].eval) < V.THRESHOLD_MATE) - { - for (let i=0; i<moves1.length; i++) - { - if (Date.now()-timeStart >= 5000) //more than 5 seconds - return currentBest; //depth 2 at least - this.play(moves1[i]); - // 0.1 * oldEval : heuristic to avoid some bad moves (not all...) - moves1[i].eval = 0.1*moves1[i].eval + - this.alphabeta(V.SEARCH_DEPTH-1, -maxeval, maxeval); - this.undo(moves1[i]); - } - moves1.sort( (a,b) => { - return (color=="w" ? 1 : -1) * (b.eval - a.eval); }); - } - else - return currentBest; -// console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; })); - - candidates = [0]; - for (let j=1; j<moves1.length && moves1[j].eval == moves1[0].eval; j++) - candidates.push(j); - return moves1[sample(candidates)]; - } - - alphabeta(depth, alpha, beta) - { - const maxeval = V.INFINITY; - const color = this.turn; - const score = this.getCurrentScore(); - if (score != "*") - return (score=="1/2" ? 0 : (score=="1-0" ? 1 : -1) * maxeval); - if (depth == 0) + ////////////// + // MISC UTILS + + static get HasFlags() { return true; } //some variants don't have flags + + static get HasEnpassant() { return true; } //some variants don't have ep. + + // Path to pieces + static getPpath(b) + { + return b; //usual pieces in pieces/ folder + } + + // Turn "wb" into "B" (for FEN) + static board2fen(b) + { + return b[0]=='w' ? b[1].toUpperCase() : b[1]; + } + + // Turn "p" into "bp" (for board) + static fen2board(f) + { + return f.charCodeAt()<=90 ? "w"+f.toLowerCase() : "b"+f; + } + + // Check if FEN describe a position + static IsGoodFen(fen) + { + const fenParsed = V.ParseFen(fen); + // 1) Check position + if (!V.IsGoodPosition(fenParsed.position)) + return false; + // 2) Check turn + if (!fenParsed.turn || !V.IsGoodTurn(fenParsed.turn)) + return false; + // 3) Check moves count + if (!fenParsed.movesCount || !(parseInt(fenParsed.movesCount) >= 0)) + return false; + // 4) Check flags + if (V.HasFlags && (!fenParsed.flags || !V.IsGoodFlags(fenParsed.flags))) + return false; + // 5) Check enpassant + if (V.HasEnpassant && + (!fenParsed.enpassant || !V.IsGoodEnpassant(fenParsed.enpassant))) + { + return false; + } + return true; + } + + // Is position part of the FEN a priori correct? + static IsGoodPosition(position) + { + if (position.length == 0) + return false; + const rows = position.split("/"); + if (rows.length != V.size.x) + return false; + for (let row of rows) + { + let sumElts = 0; + for (let i=0; i<row.length; i++) + { + if (V.PIECES.includes(row[i].toLowerCase())) + sumElts++; + else + { + const num = parseInt(row[i]); + if (isNaN(num)) + return false; + sumElts += num; + } + } + if (sumElts != V.size.y) + return false; + } + return true; + } + + // For FEN checking + static IsGoodTurn(turn) + { + return ["w","b"].includes(turn); + } + + // For FEN checking + static IsGoodFlags(flags) + { + return !!flags.match(/^[01]{4,4}$/); + } + + static IsGoodEnpassant(enpassant) + { + if (enpassant != "-") + { + const ep = V.SquareToCoords(fenParsed.enpassant); + if (isNaN(ep.x) || !V.OnBoard(ep)) + return false; + } + return true; + } + + // 3 --> d (column number to letter) + static CoordToColumn(colnum) + { + return String.fromCharCode(97 + colnum); + } + + // d --> 3 (column letter to number) + static ColumnToCoord(column) + { + return column.charCodeAt(0) - 97; + } + + // a4 --> {x:3,y:0} + static SquareToCoords(sq) + { + return { + // NOTE: column is always one char => max 26 columns + // row is counted from black side => subtraction + x: V.size.x - parseInt(sq.substr(1)), + y: sq[0].charCodeAt() - 97 + }; + } + + // {x:0,y:4} --> e8 + static CoordsToSquare(coords) + { + return V.CoordToColumn(coords.y) + (V.size.x - coords.x); + } + + // Aggregates flags into one object + aggregateFlags() + { + return this.castleFlags; + } + + // Reverse operation + disaggregateFlags(flags) + { + this.castleFlags = flags; + } + + // En-passant square, if any + getEpSquare(moveOrSquare) + { + if (!moveOrSquare) + return undefined; + if (typeof moveOrSquare === "string") + { + const square = moveOrSquare; + if (square == "-") + return undefined; + return V.SquareToCoords(square); + } + // Argument is a move: + const move = moveOrSquare; + const [sx,sy,ex] = [move.start.x,move.start.y,move.end.x]; + // TODO: next conditions are first for Atomic, and last for Checkered + if (move.appear.length > 0 && Math.abs(sx - ex) == 2 + && move.appear[0].p == V.PAWN && ["w","b"].includes(move.appear[0].c)) + { + return { + x: (sx + ex)/2, + y: sy + }; + } + return undefined; //default + } + + // Can thing on square1 take thing on square2 + canTake([x1,y1], [x2,y2]) + { + return this.getColor(x1,y1) !== this.getColor(x2,y2); + } + + // Is (x,y) on the chessboard? + static OnBoard(x,y) + { + return (x>=0 && x<V.size.x && y>=0 && y<V.size.y); + } + + // Used in interface: 'side' arg == player color + canIplay(side, [x,y]) + { + return (this.turn == side && this.getColor(x,y) == side); + } + + // On which squares is color under check ? (for interface) + getCheckSquares(color) + { + return this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]) + ? [JSON.parse(JSON.stringify(this.kingPos[color]))] //need to duplicate! + : []; + } + + ///////////// + // FEN UTILS + + // Setup the initial random (assymetric) position + static GenRandInitFen() + { + let pieces = { "w": new Array(8), "b": new Array(8) }; + // Shuffle pieces on first and last rank + for (let c of ["w","b"]) + { + let positions = ArrayFun.range(8); + + // Get random squares for bishops + let randIndex = 2 * random(4); + const bishop1Pos = positions[randIndex]; + // The second bishop must be on a square of different color + let randIndex_tmp = 2 * random(4) + 1; + const bishop2Pos = positions[randIndex_tmp]; + // Remove chosen squares + positions.splice(Math.max(randIndex,randIndex_tmp), 1); + positions.splice(Math.min(randIndex,randIndex_tmp), 1); + + // Get random squares for knights + randIndex = random(6); + const knight1Pos = positions[randIndex]; + positions.splice(randIndex, 1); + randIndex = random(5); + const knight2Pos = positions[randIndex]; + positions.splice(randIndex, 1); + + // Get random square for queen + randIndex = random(4); + const queenPos = positions[randIndex]; + positions.splice(randIndex, 1); + + // Rooks and king positions are now fixed, + // because of the ordering rook-king-rook + const rook1Pos = positions[0]; + const kingPos = positions[1]; + const rook2Pos = positions[2]; + + // Finally put the shuffled pieces in the board array + pieces[c][rook1Pos] = 'r'; + pieces[c][knight1Pos] = 'n'; + pieces[c][bishop1Pos] = 'b'; + pieces[c][queenPos] = 'q'; + pieces[c][kingPos] = 'k'; + pieces[c][bishop2Pos] = 'b'; + pieces[c][knight2Pos] = 'n'; + pieces[c][rook2Pos] = 'r'; + } + return pieces["b"].join("") + + "/pppppppp/8/8/8/8/PPPPPPPP/" + + pieces["w"].join("").toUpperCase() + + " w 0 1111 -"; //add turn + flags + enpassant + } + + // "Parse" FEN: just return untransformed string data + static ParseFen(fen) + { + const fenParts = fen.split(" "); + let res = + { + position: fenParts[0], + turn: fenParts[1], + movesCount: fenParts[2], + }; + let nextIdx = 3; + if (V.HasFlags) + Object.assign(res, {flags: fenParts[nextIdx++]}); + if (V.HasEnpassant) + Object.assign(res, {enpassant: fenParts[nextIdx]}); + return res; + } + + // Return current fen (game state) + getFen() + { + return this.getBaseFen() + " " + + this.getTurnFen() + " " + this.movesCount + + (V.HasFlags ? (" " + this.getFlagsFen()) : "") + + (V.HasEnpassant ? (" " + this.getEnpassantFen()) : ""); + } + + // Position part of the FEN string + getBaseFen() + { + let position = ""; + for (let i=0; i<V.size.x; i++) + { + let emptyCount = 0; + for (let j=0; j<V.size.y; j++) + { + if (this.board[i][j] == V.EMPTY) + emptyCount++; + else + { + if (emptyCount > 0) + { + // Add empty squares in-between + position += emptyCount; + emptyCount = 0; + } + position += V.board2fen(this.board[i][j]); + } + } + if (emptyCount > 0) + { + // "Flush remainder" + position += emptyCount; + } + if (i < V.size.x - 1) + position += "/"; //separate rows + } + return position; + } + + getTurnFen() + { + return this.turn; + } + + // Flags part of the FEN string + getFlagsFen() + { + let flags = ""; + // Add castling flags + for (let i of ['w','b']) + { + for (let j=0; j<2; j++) + flags += (this.castleFlags[i][j] ? '1' : '0'); + } + return flags; + } + + // Enpassant part of the FEN string + getEnpassantFen() + { + const L = this.epSquares.length; + if (!this.epSquares[L-1]) + return "-"; //no en-passant + return V.CoordsToSquare(this.epSquares[L-1]); + } + + // Turn position fen into double array ["wb","wp","bk",...] + static GetBoard(position) + { + const rows = position.split("/"); + let board = ArrayFun.init(V.size.x, V.size.y, ""); + for (let i=0; i<rows.length; i++) + { + let j = 0; + for (let indexInRow = 0; indexInRow < rows[i].length; indexInRow++) + { + const character = rows[i][indexInRow]; + const num = parseInt(character); + if (!isNaN(num)) + j += num; //just shift j + else //something at position i,j + board[i][j++] = V.fen2board(character); + } + } + return board; + } + + // Extract (relevant) flags from fen + setFlags(fenflags) + { + // white a-castle, h-castle, black a-castle, h-castle + this.castleFlags = {'w': [true,true], 'b': [true,true]}; + if (!fenflags) + return; + for (let i=0; i<4; i++) + this.castleFlags[i < 2 ? 'w' : 'b'][i%2] = (fenflags.charAt(i) == '1'); + } + + ////////////////// + // INITIALIZATION + + // Fen string fully describes the game state + constructor(fen) + { + const fenParsed = V.ParseFen(fen); + this.board = V.GetBoard(fenParsed.position); + this.turn = fenParsed.turn[0]; //[0] to work with MarseilleRules + this.movesCount = parseInt(fenParsed.movesCount); + this.setOtherVariables(fen); + } + + // Scan board for kings and rooks positions + scanKingsRooks(fen) + { + this.INIT_COL_KING = {'w':-1, 'b':-1}; + this.INIT_COL_ROOK = {'w':[-1,-1], 'b':[-1,-1]}; + this.kingPos = {'w':[-1,-1], 'b':[-1,-1]}; //squares of white and black king + const fenRows = V.ParseFen(fen).position.split("/"); + for (let i=0; i<fenRows.length; i++) + { + let k = 0; //column index on board + for (let j=0; j<fenRows[i].length; j++) + { + switch (fenRows[i].charAt(j)) + { + case 'k': + this.kingPos['b'] = [i,k]; + this.INIT_COL_KING['b'] = k; + break; + case 'K': + this.kingPos['w'] = [i,k]; + this.INIT_COL_KING['w'] = k; + break; + case 'r': + if (this.INIT_COL_ROOK['b'][0] < 0) + this.INIT_COL_ROOK['b'][0] = k; + else + this.INIT_COL_ROOK['b'][1] = k; + break; + case 'R': + if (this.INIT_COL_ROOK['w'][0] < 0) + this.INIT_COL_ROOK['w'][0] = k; + else + this.INIT_COL_ROOK['w'][1] = k; + break; + default: + const num = parseInt(fenRows[i].charAt(j)); + if (!isNaN(num)) + k += (num-1); + } + k++; + } + } + } + + // Some additional variables from FEN (variant dependant) + setOtherVariables(fen) + { + // Set flags and enpassant: + const parsedFen = V.ParseFen(fen); + if (V.HasFlags) + this.setFlags(parsedFen.flags); + if (V.HasEnpassant) + { + const epSq = parsedFen.enpassant != "-" + ? V.SquareToCoords(parsedFen.enpassant) + : undefined; + this.epSquares = [ epSq ]; + } + // Search for king and rooks positions: + this.scanKingsRooks(fen); + } + + ///////////////////// + // GETTERS & SETTERS + + static get size() + { + return {x:8, y:8}; + } + + // Color of thing on suqare (i,j). 'undefined' if square is empty + getColor(i,j) + { + return this.board[i][j].charAt(0); + } + + // Piece type on square (i,j). 'undefined' if square is empty + getPiece(i,j) + { + return this.board[i][j].charAt(1); + } + + // Get opponent color + static GetOppCol(color) + { + return (color=="w" ? "b" : "w"); + } + + // Get next color (for compatibility with 3 and 4 players games) + static GetNextCol(color) + { + return V.GetOppCol(color); + } + + // Pieces codes (for a clearer code) + static get PAWN() { return 'p'; } + static get ROOK() { return 'r'; } + static get KNIGHT() { return 'n'; } + static get BISHOP() { return 'b'; } + static get QUEEN() { return 'q'; } + static get KING() { return 'k'; } + + // For FEN checking: + static get PIECES() + { + return [V.PAWN,V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN,V.KING]; + } + + // Empty square + static get EMPTY() { return ""; } + + // Some pieces movements + static get steps() + { + return { + 'r': [ [-1,0],[1,0],[0,-1],[0,1] ], + 'n': [ [-1,-2],[-1,2],[1,-2],[1,2],[-2,-1],[-2,1],[2,-1],[2,1] ], + 'b': [ [-1,-1],[-1,1],[1,-1],[1,1] ], + }; + } + + //////////////////// + // MOVES GENERATION + + // All possible moves from selected square (assumption: color is OK) + getPotentialMovesFrom([x,y]) + { + switch (this.getPiece(x,y)) + { + case V.PAWN: + return this.getPotentialPawnMoves([x,y]); + case V.ROOK: + return this.getPotentialRookMoves([x,y]); + case V.KNIGHT: + return this.getPotentialKnightMoves([x,y]); + case V.BISHOP: + return this.getPotentialBishopMoves([x,y]); + case V.QUEEN: + return this.getPotentialQueenMoves([x,y]); + case V.KING: + return this.getPotentialKingMoves([x,y]); + } + } + + // Build a regular move from its initial and destination squares. + // tr: transformation + getBasicMove([sx,sy], [ex,ey], tr) + { + let mv = new Move({ + appear: [ + new PiPo({ + x: ex, + y: ey, + c: !!tr ? tr.c : this.getColor(sx,sy), + p: !!tr ? tr.p : this.getPiece(sx,sy) + }) + ], + vanish: [ + new PiPo({ + x: sx, + y: sy, + c: this.getColor(sx,sy), + p: this.getPiece(sx,sy) + }) + ] + }); + + // The opponent piece disappears if we take it + if (this.board[ex][ey] != V.EMPTY) + { + mv.vanish.push( + new PiPo({ + x: ex, + y: ey, + c: this.getColor(ex,ey), + p: this.getPiece(ex,ey) + }) + ); + } + return mv; + } + + // Generic method to find possible moves of non-pawn pieces: + // "sliding or jumping" + getSlideNJumpMoves([x,y], steps, oneStep) + { + const color = this.getColor(x,y); + let moves = []; + outerLoop: + for (let step of steps) + { + let i = x + step[0]; + let j = y + step[1]; + while (V.OnBoard(i,j) && this.board[i][j] == V.EMPTY) + { + moves.push(this.getBasicMove([x,y], [i,j])); + if (oneStep !== undefined) + continue outerLoop; + i += step[0]; + j += step[1]; + } + if (V.OnBoard(i,j) && this.canTake([x,y], [i,j])) + moves.push(this.getBasicMove([x,y], [i,j])); + } + return moves; + } + + // What are the pawn moves from square x,y ? + getPotentialPawnMoves([x,y]) + { + const color = this.turn; + let moves = []; + const [sizeX,sizeY] = [V.size.x,V.size.y]; + const shiftX = (color == "w" ? -1 : 1); + const firstRank = (color == 'w' ? sizeX-1 : 0); + const startRank = (color == "w" ? sizeX-2 : 1); + const lastRank = (color == "w" ? 0 : sizeX-1); + const pawnColor = this.getColor(x,y); //can be different for checkered + + // NOTE: next condition is generally true (no pawn on last rank) + if (x+shiftX >= 0 && x+shiftX < sizeX) + { + const finalPieces = x + shiftX == lastRank + ? [V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN] + : [V.PAWN] + // One square forward + if (this.board[x+shiftX][y] == V.EMPTY) + { + for (let piece of finalPieces) + { + moves.push(this.getBasicMove([x,y], [x+shiftX,y], + {c:pawnColor,p:piece})); + } + // Next condition because pawns on 1st rank can generally jump + if ([startRank,firstRank].includes(x) + && this.board[x+2*shiftX][y] == V.EMPTY) + { + // Two squares jump + moves.push(this.getBasicMove([x,y], [x+2*shiftX,y])); + } + } + // Captures + for (let shiftY of [-1,1]) + { + if (y + shiftY >= 0 && y + shiftY < sizeY + && this.board[x+shiftX][y+shiftY] != V.EMPTY + && this.canTake([x,y], [x+shiftX,y+shiftY])) + { + for (let piece of finalPieces) + { + moves.push(this.getBasicMove([x,y], [x+shiftX,y+shiftY], + {c:pawnColor,p:piece})); + } + } + } + } + + if (V.HasEnpassant) + { + // En passant + const Lep = this.epSquares.length; + const epSquare = this.epSquares[Lep-1]; //always at least one element + if (!!epSquare && epSquare.x == x+shiftX && Math.abs(epSquare.y - y) == 1) + { + let enpassantMove = this.getBasicMove([x,y], [epSquare.x,epSquare.y]); + enpassantMove.vanish.push({ + x: x, + y: epSquare.y, + p: 'p', + c: this.getColor(x,epSquare.y) + }); + moves.push(enpassantMove); + } + } + + return moves; + } + + // What are the rook moves from square x,y ? + getPotentialRookMoves(sq) + { + return this.getSlideNJumpMoves(sq, V.steps[V.ROOK]); + } + + // What are the knight moves from square x,y ? + getPotentialKnightMoves(sq) + { + return this.getSlideNJumpMoves(sq, V.steps[V.KNIGHT], "oneStep"); + } + + // What are the bishop moves from square x,y ? + getPotentialBishopMoves(sq) + { + return this.getSlideNJumpMoves(sq, V.steps[V.BISHOP]); + } + + // What are the queen moves from square x,y ? + getPotentialQueenMoves(sq) + { + return this.getSlideNJumpMoves(sq, + V.steps[V.ROOK].concat(V.steps[V.BISHOP])); + } + + // What are the king moves from square x,y ? + getPotentialKingMoves(sq) + { + // Initialize with normal moves + let moves = this.getSlideNJumpMoves(sq, + V.steps[V.ROOK].concat(V.steps[V.BISHOP]), "oneStep"); + return moves.concat(this.getCastleMoves(sq)); + } + + getCastleMoves([x,y]) + { + const c = this.getColor(x,y); + if (x != (c=="w" ? V.size.x-1 : 0) || y != this.INIT_COL_KING[c]) + return []; //x isn't first rank, or king has moved (shortcut) + + // Castling ? + const oppCol = V.GetOppCol(c); + let moves = []; + let i = 0; + const finalSquares = [ [2,3], [V.size.y-2,V.size.y-3] ]; //king, then rook + castlingCheck: + for (let castleSide=0; castleSide < 2; castleSide++) //large, then small + { + if (!this.castleFlags[c][castleSide]) + continue; + // If this code is reached, rooks and king are on initial position + + // Nothing on the path of the king ? + // (And no checks; OK also if y==finalSquare) + let step = finalSquares[castleSide][0] < y ? -1 : 1; + for (i=y; i!=finalSquares[castleSide][0]; i+=step) + { + if (this.isAttacked([x,i], [oppCol]) || (this.board[x][i] != V.EMPTY && + // NOTE: next check is enough, because of chessboard constraints + (this.getColor(x,i) != c + || ![V.KING,V.ROOK].includes(this.getPiece(x,i))))) + { + continue castlingCheck; + } + } + + // Nothing on the path to the rook? + step = castleSide == 0 ? -1 : 1; + for (i = y + step; i != this.INIT_COL_ROOK[c][castleSide]; i += step) + { + if (this.board[x][i] != V.EMPTY) + continue castlingCheck; + } + const rookPos = this.INIT_COL_ROOK[c][castleSide]; + + // Nothing on final squares, except maybe king and castling rook? + for (i=0; i<2; i++) + { + if (this.board[x][finalSquares[castleSide][i]] != V.EMPTY && + this.getPiece(x,finalSquares[castleSide][i]) != V.KING && + finalSquares[castleSide][i] != rookPos) + { + continue castlingCheck; + } + } + + // If this code is reached, castle is valid + moves.push( new Move({ + appear: [ + new PiPo({x:x,y:finalSquares[castleSide][0],p:V.KING,c:c}), + new PiPo({x:x,y:finalSquares[castleSide][1],p:V.ROOK,c:c})], + vanish: [ + new PiPo({x:x,y:y,p:V.KING,c:c}), + new PiPo({x:x,y:rookPos,p:V.ROOK,c:c})], + end: Math.abs(y - rookPos) <= 2 + ? {x:x, y:rookPos} + : {x:x, y:y + 2 * (castleSide==0 ? -1 : 1)} + }) ); + } + + return moves; + } + + //////////////////// + // MOVES VALIDATION + + // For the interface: possible moves for the current turn from square sq + getPossibleMovesFrom(sq) + { + return this.filterValid( this.getPotentialMovesFrom(sq) ); + } + + // TODO: promotions (into R,B,N,Q) should be filtered only once + filterValid(moves) + { + if (moves.length == 0) + return []; + const color = this.turn; + return moves.filter(m => { + this.play(m); + const res = !this.underCheck(color); + this.undo(m); + return res; + }); + } + + // Search for all valid moves considering current turn + // (for engine and game end) + getAllValidMoves() + { + const color = this.turn; + const oppCol = V.GetOppCol(color); + let potentialMoves = []; + for (let i=0; i<V.size.x; i++) + { + for (let j=0; j<V.size.y; j++) + { + // Next condition "!= oppCol" to work with checkered variant + if (this.board[i][j] != V.EMPTY && this.getColor(i,j) != oppCol) + { + Array.prototype.push.apply(potentialMoves, + this.getPotentialMovesFrom([i,j])); + } + } + } + return this.filterValid(potentialMoves); + } + + // Stop at the first move found + atLeastOneMove() + { + const color = this.turn; + const oppCol = V.GetOppCol(color); + for (let i=0; i<V.size.x; i++) + { + for (let j=0; j<V.size.y; j++) + { + if (this.board[i][j] != V.EMPTY && this.getColor(i,j) != oppCol) + { + const moves = this.getPotentialMovesFrom([i,j]); + if (moves.length > 0) + { + for (let k=0; k<moves.length; k++) + { + if (this.filterValid([moves[k]]).length > 0) + return true; + } + } + } + } + } + return false; + } + + // Check if pieces of color in 'colors' are attacking (king) on square x,y + isAttacked(sq, colors) + { + return (this.isAttackedByPawn(sq, colors) + || this.isAttackedByRook(sq, colors) + || this.isAttackedByKnight(sq, colors) + || this.isAttackedByBishop(sq, colors) + || this.isAttackedByQueen(sq, colors) + || this.isAttackedByKing(sq, colors)); + } + + // Is square x,y attacked by 'colors' pawns ? + isAttackedByPawn([x,y], colors) + { + for (let c of colors) + { + let pawnShift = (c=="w" ? 1 : -1); + if (x+pawnShift>=0 && x+pawnShift<V.size.x) + { + for (let i of [-1,1]) + { + if (y+i>=0 && y+i<V.size.y && this.getPiece(x+pawnShift,y+i)==V.PAWN + && this.getColor(x+pawnShift,y+i)==c) + { + return true; + } + } + } + } + return false; + } + + // Is square x,y attacked by 'colors' rooks ? + isAttackedByRook(sq, colors) + { + return this.isAttackedBySlideNJump(sq, colors, V.ROOK, V.steps[V.ROOK]); + } + + // Is square x,y attacked by 'colors' knights ? + isAttackedByKnight(sq, colors) + { + return this.isAttackedBySlideNJump(sq, colors, + V.KNIGHT, V.steps[V.KNIGHT], "oneStep"); + } + + // Is square x,y attacked by 'colors' bishops ? + isAttackedByBishop(sq, colors) + { + return this.isAttackedBySlideNJump(sq, colors, V.BISHOP, V.steps[V.BISHOP]); + } + + // Is square x,y attacked by 'colors' queens ? + isAttackedByQueen(sq, colors) + { + return this.isAttackedBySlideNJump(sq, colors, V.QUEEN, + V.steps[V.ROOK].concat(V.steps[V.BISHOP])); + } + + // Is square x,y attacked by 'colors' king(s) ? + isAttackedByKing(sq, colors) + { + return this.isAttackedBySlideNJump(sq, colors, V.KING, + V.steps[V.ROOK].concat(V.steps[V.BISHOP]), "oneStep"); + } + + // Generic method for non-pawn pieces ("sliding or jumping"): + // is x,y attacked by a piece of color in array 'colors' ? + isAttackedBySlideNJump([x,y], colors, piece, steps, oneStep) + { + for (let step of steps) + { + let rx = x+step[0], ry = y+step[1]; + while (V.OnBoard(rx,ry) && this.board[rx][ry] == V.EMPTY && !oneStep) + { + rx += step[0]; + ry += step[1]; + } + if (V.OnBoard(rx,ry) && this.getPiece(rx,ry) === piece + && colors.includes(this.getColor(rx,ry))) + { + return true; + } + } + return false; + } + + // Is color under check after his move ? + underCheck(color) + { + return this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]); + } + + ///////////////// + // MOVES PLAYING + + // Apply a move on board + static PlayOnBoard(board, move) + { + for (let psq of move.vanish) + board[psq.x][psq.y] = V.EMPTY; + for (let psq of move.appear) + board[psq.x][psq.y] = psq.c + psq.p; + } + // Un-apply the played move + static UndoOnBoard(board, move) + { + for (let psq of move.appear) + board[psq.x][psq.y] = V.EMPTY; + for (let psq of move.vanish) + board[psq.x][psq.y] = psq.c + psq.p; + } + + // After move is played, update variables + flags + updateVariables(move) + { + let piece = undefined; + let c = undefined; + if (move.vanish.length >= 1) + { + // Usual case, something is moved + piece = move.vanish[0].p; + c = move.vanish[0].c; + } + else + { + // Crazyhouse-like variants + piece = move.appear[0].p; + c = move.appear[0].c; + } + if (c == "c") //if (!["w","b"].includes(c)) + { + // 'c = move.vanish[0].c' doesn't work for Checkered + c = V.GetOppCol(this.turn); + } + const firstRank = (c == "w" ? V.size.x-1 : 0); + + // Update king position + flags + if (piece == V.KING && move.appear.length > 0) + { + this.kingPos[c][0] = move.appear[0].x; + this.kingPos[c][1] = move.appear[0].y; + if (V.HasFlags) + this.castleFlags[c] = [false,false]; + return; + } + if (V.HasFlags) + { + // Update castling flags if rooks are moved + const oppCol = V.GetOppCol(c); + const oppFirstRank = (V.size.x-1) - firstRank; + if (move.start.x == firstRank //our rook moves? + && this.INIT_COL_ROOK[c].includes(move.start.y)) + { + const flagIdx = (move.start.y == this.INIT_COL_ROOK[c][0] ? 0 : 1); + this.castleFlags[c][flagIdx] = false; + } + else if (move.end.x == oppFirstRank //we took opponent rook? + && this.INIT_COL_ROOK[oppCol].includes(move.end.y)) + { + const flagIdx = (move.end.y == this.INIT_COL_ROOK[oppCol][0] ? 0 : 1); + this.castleFlags[oppCol][flagIdx] = false; + } + } + } + + // After move is undo-ed *and flags resetted*, un-update other variables + // TODO: more symmetry, by storing flags increment in move (?!) + unupdateVariables(move) + { + // (Potentially) Reset king position + const c = this.getColor(move.start.x,move.start.y); + if (this.getPiece(move.start.x,move.start.y) == V.KING) + this.kingPos[c] = [move.start.x, move.start.y]; + } + + play(move) + { + // DEBUG: +// if (!this.states) this.states = []; +// const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen(); +// this.states.push(stateFen); + + if (V.HasFlags) + move.flags = JSON.stringify(this.aggregateFlags()); //save flags (for undo) + if (V.HasEnpassant) + this.epSquares.push( this.getEpSquare(move) ); + if (!move.color) + move.color = this.turn; //for interface + V.PlayOnBoard(this.board, move); + this.turn = V.GetOppCol(this.turn); + this.movesCount++; + this.updateVariables(move); + } + + undo(move) + { + if (V.HasEnpassant) + this.epSquares.pop(); + if (V.HasFlags) + this.disaggregateFlags(JSON.parse(move.flags)); + V.UndoOnBoard(this.board, move); + this.turn = V.GetOppCol(this.turn); + this.movesCount--; + this.unupdateVariables(move); + + // DEBUG: +// const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen(); +// if (stateFen != this.states[this.states.length-1]) debugger; +// this.states.pop(); + } + + /////////////// + // END OF GAME + + // What is the score ? (Interesting if game is over) + getCurrentScore() + { + if (this.atLeastOneMove()) // game not over + return "*"; + + // Game over + const color = this.turn; + // No valid move: stalemate or checkmate? + if (!this.isAttacked(this.kingPos[color], [V.GetOppCol(color)])) + return "1/2"; + // OK, checkmate + return (color == "w" ? "0-1" : "1-0"); + } + + /////////////// + // ENGINE PLAY + + // Pieces values + static get VALUES() + { + return { + 'p': 1, + 'r': 5, + 'n': 3, + 'b': 3, + 'q': 9, + 'k': 1000 + }; + } + + // "Checkmate" (unreachable eval) + static get INFINITY() { return 9999; } + + // At this value or above, the game is over + static get THRESHOLD_MATE() { return V.INFINITY; } + + // Search depth: 2 for high branching factor, 4 for small (Loser chess, eg.) + static get SEARCH_DEPTH() { return 3; } + + // Assumption: at least one legal move + // NOTE: works also for extinction chess because depth is 3... + getComputerMove() + { + const maxeval = V.INFINITY; + const color = this.turn; + // Some variants may show a bigger moves list to the human (Switching), + // thus the argument "computer" below (which is generally ignored) + let moves1 = this.getAllValidMoves("computer"); + + // Can I mate in 1 ? (for Magnetic & Extinction) + for (let i of shuffle(ArrayFun.range(moves1.length))) + { + this.play(moves1[i]); + let finish = (Math.abs(this.evalPosition()) >= V.THRESHOLD_MATE); + if (!finish) + { + const score = this.getCurrentScore(); + if (["1-0","0-1"].includes(score)) + finish = true; + } + this.undo(moves1[i]); + if (finish) + return moves1[i]; + } + + // Rank moves using a min-max at depth 2 + for (let i=0; i<moves1.length; i++) + { + // Initial self evaluation is very low: "I'm checkmated" + moves1[i].eval = (color=="w" ? -1 : 1) * maxeval; + this.play(moves1[i]); + const score1 = this.getCurrentScore(); + let eval2 = undefined; + if (score1 == "*") + { + // Initial enemy evaluation is very low too, for him + eval2 = (color=="w" ? 1 : -1) * maxeval; + // Second half-move: + let moves2 = this.getAllValidMoves("computer"); + for (let j=0; j<moves2.length; j++) + { + this.play(moves2[j]); + const score2 = this.getCurrentScore(); + const evalPos = score2 == "*" + ? this.evalPosition() + : (score2=="1/2" ? 0 : (score2=="1-0" ? 1 : -1) * maxeval); + if ((color == "w" && evalPos < eval2) + || (color=="b" && evalPos > eval2)) + { + eval2 = evalPos; + } + this.undo(moves2[j]); + } + } + else + eval2 = (score1=="1/2" ? 0 : (score1=="1-0" ? 1 : -1) * maxeval); + if ((color=="w" && eval2 > moves1[i].eval) + || (color=="b" && eval2 < moves1[i].eval)) + { + moves1[i].eval = eval2; + } + this.undo(moves1[i]); + } + moves1.sort( (a,b) => { return (color=="w" ? 1 : -1) * (b.eval - a.eval); }); + + let candidates = [0]; //indices of candidates moves + for (let j=1; j<moves1.length && moves1[j].eval == moves1[0].eval; j++) + candidates.push(j); + let currentBest = moves1[sample(candidates)]; + + // From here, depth >= 3: may take a while, so we control time + const timeStart = Date.now(); + + // Skip depth 3+ if we found a checkmate (or if we are checkmated in 1...) + if (V.SEARCH_DEPTH >= 3 && Math.abs(moves1[0].eval) < V.THRESHOLD_MATE) + { + for (let i=0; i<moves1.length; i++) + { + if (Date.now()-timeStart >= 5000) //more than 5 seconds + return currentBest; //depth 2 at least + this.play(moves1[i]); + // 0.1 * oldEval : heuristic to avoid some bad moves (not all...) + moves1[i].eval = 0.1*moves1[i].eval + + this.alphabeta(V.SEARCH_DEPTH-1, -maxeval, maxeval); + this.undo(moves1[i]); + } + moves1.sort( (a,b) => { + return (color=="w" ? 1 : -1) * (b.eval - a.eval); }); + } + else + return currentBest; +// console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; })); + + candidates = [0]; + for (let j=1; j<moves1.length && moves1[j].eval == moves1[0].eval; j++) + candidates.push(j); + return moves1[sample(candidates)]; + } + + alphabeta(depth, alpha, beta) + { + const maxeval = V.INFINITY; + const color = this.turn; + const score = this.getCurrentScore(); + if (score != "*") + return (score=="1/2" ? 0 : (score=="1-0" ? 1 : -1) * maxeval); + if (depth == 0) return this.evalPosition(); - const moves = this.getAllValidMoves("computer"); + const moves = this.getAllValidMoves("computer"); let v = color=="w" ? -maxeval : maxeval; - if (color == "w") - { - for (let i=0; i<moves.length; i++) + if (color == "w") + { + for (let i=0; i<moves.length; i++) + { + this.play(moves[i]); + v = Math.max(v, this.alphabeta(depth-1, alpha, beta)); + this.undo(moves[i]); + alpha = Math.max(alpha, v); + if (alpha >= beta) + break; //beta cutoff + } + } + else //color=="b" + { + for (let i=0; i<moves.length; i++) + { + this.play(moves[i]); + v = Math.min(v, this.alphabeta(depth-1, alpha, beta)); + this.undo(moves[i]); + beta = Math.min(beta, v); + if (alpha >= beta) + break; //alpha cutoff + } + } + return v; + } + + evalPosition() + { + let evaluation = 0; + // Just count material for now + for (let i=0; i<V.size.x; i++) + { + for (let j=0; j<V.size.y; j++) + { + if (this.board[i][j] != V.EMPTY) + { + const sign = this.getColor(i,j) == "w" ? 1 : -1; + evaluation += sign * V.VALUES[this.getPiece(i,j)]; + } + } + } + return evaluation; + } + + ///////////////////////// + // MOVES + GAME NOTATION + ///////////////////////// + + // Context: just before move is played, turn hasn't changed + // TODO: un-ambiguous notation (switch on piece type, check directions...) + getNotation(move) + { + if (move.appear.length == 2 && move.appear[0].p == V.KING) //castle + return (move.end.y < move.start.y ? "0-0-0" : "0-0"); + + // Translate final square + const finalSquare = V.CoordsToSquare(move.end); + + const piece = this.getPiece(move.start.x, move.start.y); + if (piece == V.PAWN) + { + // Pawn move + let notation = ""; + if (move.vanish.length > move.appear.length) { - this.play(moves[i]); - v = Math.max(v, this.alphabeta(depth-1, alpha, beta)); - this.undo(moves[i]); - alpha = Math.max(alpha, v); - if (alpha >= beta) - break; //beta cutoff - } - } - else //color=="b" - { - for (let i=0; i<moves.length; i++) - { - this.play(moves[i]); - v = Math.min(v, this.alphabeta(depth-1, alpha, beta)); - this.undo(moves[i]); - beta = Math.min(beta, v); - if (alpha >= beta) - break; //alpha cutoff - } - } - return v; - } - - evalPosition() - { - let evaluation = 0; - // Just count material for now - for (let i=0; i<V.size.x; i++) - { - for (let j=0; j<V.size.y; j++) - { - if (this.board[i][j] != V.EMPTY) - { - const sign = this.getColor(i,j) == "w" ? 1 : -1; - evaluation += sign * V.VALUES[this.getPiece(i,j)]; - } - } - } - return evaluation; - } - - ///////////////////////// - // MOVES + GAME NOTATION - ///////////////////////// - - // Context: just before move is played, turn hasn't changed - // TODO: un-ambiguous notation (switch on piece type, check directions...) - getNotation(move) - { - if (move.appear.length == 2 && move.appear[0].p == V.KING) //castle - return (move.end.y < move.start.y ? "0-0-0" : "0-0"); - - // Translate final square - const finalSquare = V.CoordsToSquare(move.end); - - const piece = this.getPiece(move.start.x, move.start.y); - if (piece == V.PAWN) - { - // Pawn move - let notation = ""; - if (move.vanish.length > move.appear.length) - { - // Capture - const startColumn = V.CoordToColumn(move.start.y); - notation = startColumn + "x" + finalSquare; - } - else //no capture - notation = finalSquare; - if (move.appear.length > 0 && move.appear[0].p != V.PAWN) //promotion - notation += "=" + move.appear[0].p.toUpperCase(); - return notation; - } - - else - { - // Piece movement - return piece.toUpperCase() + - (move.vanish.length > move.appear.length ? "x" : "") + finalSquare; - } - } + // Capture + const startColumn = V.CoordToColumn(move.start.y); + notation = startColumn + "x" + finalSquare; + } + else //no capture + notation = finalSquare; + if (move.appear.length > 0 && move.appear[0].p != V.PAWN) //promotion + notation += "=" + move.appear[0].p.toUpperCase(); + return notation; + } + + else + { + // Piece movement + return piece.toUpperCase() + + (move.vanish.length > move.appear.length ? "x" : "") + finalSquare; + } + } } diff --git a/client/src/components/ComputerGame.vue b/client/src/components/ComputerGame.vue index b3db07f9..2070cd09 100644 --- a/client/src/components/ComputerGame.vue +++ b/client/src/components/ComputerGame.vue @@ -75,6 +75,7 @@ export default { const vModule = await import("@/variants/" + this.vname + ".js"); window.V = vModule.VariantRules; this.compWorker.postMessage(["scripts",this.vname]); + this.compWorker.postMessage(["init",this.fen]); this.newGameFromFen(this.fen); }, newGameFromFen: function(fen) { @@ -93,7 +94,7 @@ export default { this.mycolor = (Math.random() < 0.5 ? "w" : "b"); this.orientation = this.mycolor; this.compWorker.postMessage(["init",fen]); - if (this.mycolor != "w" || this.subMode == "auto") + if (this.mycolor != "w" || this.mode == "auto") this.playComputerMove(); } }, diff --git a/client/src/playCompMove.js b/client/src/playCompMove.js index ddaeba38..062eae35 100644 --- a/client/src/playCompMove.js +++ b/client/src/playCompMove.js @@ -5,22 +5,22 @@ //self.addEventListener('message', (e) => onmessage = async function(e) { - switch (e.data[0]) - { - case "scripts": + switch (e.data[0]) + { + case "scripts": const vModule = await import("@/variants/" + e.data[1] + ".js"); - self.V = vModule.VariantRules; - break; - case "init": - const fen = e.data[1]; - self.vr = new self.V(fen); - break; - case "newmove": - self.vr.play(e.data[1]); - break; - case "askmove": - const compMove = self.vr.getComputerMove(); - postMessage(compMove); - break; - } + self.V = vModule.VariantRules; + break; + case "init": + const fen = e.data[1]; + self.vr = new self.V(fen); + break; + case "newmove": + self.vr.play(e.data[1]); + break; + case "askmove": + const compMove = self.vr.getComputerMove(); + postMessage(compMove); + break; + } } diff --git a/client/src/variants/Alice.js b/client/src/variants/Alice.js index 2feb8b8f..e80e13b6 100644 --- a/client/src/variants/Alice.js +++ b/client/src/variants/Alice.js @@ -2,6 +2,7 @@ import { ChessRules } from "@/base_rules"; import { ArrayFun} from "@/utils/array"; // NOTE: alternative implementation, probably cleaner = use only 1 board +// TODO? atLeastOneMove() would be more efficient if rewritten here (less sideBoard computations) export const VariantRules = class AliceRules extends ChessRules { static get ALICE_PIECES() @@ -98,12 +99,14 @@ export const VariantRules = class AliceRules extends ChessRules const pieces = Object.keys(V.ALICE_CODES); const codes = Object.keys(V.ALICE_PIECES); const mirrorSide = (pieces.includes(this.getPiece(x,y)) ? 1 : 2); + if (!sideBoard) + sideBoard = [this.getSideBoard(1), this.getSideBoard(2)]; const color = this.getColor(x,y); // Search valid moves on sideBoard - let saveBoard = this.board; - this.board = sideBoard || this.getSideBoard(mirrorSide); - let moves = super.getPotentialMovesFrom([x,y]) + const saveBoard = this.board; + this.board = sideBoard[mirrorSide-1]; + const moves = super.getPotentialMovesFrom([x,y]) .filter(m => { // Filter out king moves which result in under-check position on // current board (before mirror traversing) @@ -111,7 +114,7 @@ export const VariantRules = class AliceRules extends ChessRules if (m.appear[0].p == V.KING) { this.play(m); - if (this.underCheck(color)) + if (this.underCheck(color, sideBoard)) aprioriValid = false; this.undo(m); } @@ -120,7 +123,7 @@ export const VariantRules = class AliceRules extends ChessRules this.board = saveBoard; // Finally filter impossible moves - let res = moves.filter(m => { + const res = moves.filter(m => { if (m.appear.length == 2) //castle { // appear[i] must be an empty square on the other board @@ -172,11 +175,12 @@ export const VariantRules = class AliceRules extends ChessRules return res; } - filterValid(moves) + filterValid(moves, sideBoard) { if (moves.length == 0) return []; - let sideBoard = [this.getSideBoard(1), this.getSideBoard(2)]; + if (!sideBoard) + sideBoard = [this.getSideBoard(1), this.getSideBoard(2)]; const color = this.turn; return moves.filter(m => { this.playSide(m, sideBoard); //no need to track flags @@ -190,20 +194,16 @@ export const VariantRules = class AliceRules extends ChessRules { const color = this.turn; const oppCol = V.GetOppCol(color); - var potentialMoves = []; - let sideBoard = [this.getSideBoard(1), this.getSideBoard(2)]; + let potentialMoves = []; + const sideBoard = [this.getSideBoard(1), this.getSideBoard(2)]; for (var i=0; i<V.size.x; i++) { for (var j=0; j<V.size.y; j++) { if (this.board[i][j] != V.EMPTY && this.getColor(i,j) == color) { - const mirrorSide = - Object.keys(V.ALICE_CODES).includes(this.getPiece(i,j)) - ? 1 - : 2; Array.prototype.push.apply(potentialMoves, - this.getPotentialMovesFrom([i,j], sideBoard[mirrorSide-1])); + this.getPotentialMovesFrom([i,j], sideBoard)); } } } @@ -244,7 +244,8 @@ export const VariantRules = class AliceRules extends ChessRules }); } - underCheck(color, sideBoard) //sideBoard arg always provided + // sideBoard: arg containing both boards (see getAllValidMoves()) + underCheck(color, sideBoard) { const kp = this.kingPos[color]; const mirrorSide = (sideBoard[0][kp[0]][kp[1]] != V.EMPTY ? 1 : 2);