Commit | Line | Data |
---|---|---|
1d3c1faa BA |
1 | #include "EMGLLF.h" |
2 | #include <gsl/gsl_linalg.h> | |
3 | ||
4cab944a | 4 | // TODO: don't recompute indexes every time...... |
1d3c1faa BA |
5 | void EMGLLF( |
6 | // IN parameters | |
4cab944a BA |
7 | const double* phiInit, // parametre initial de moyenne renormalisé |
8 | const double* rhoInit, // parametre initial de variance renormalisé | |
9 | const double* piInit, // parametre initial des proportions | |
10 | const double* gamInit, // paramètre initial des probabilités a posteriori de chaque échantillon | |
11 | int mini, // nombre minimal d'itérations dans l'algorithme EM | |
12 | int maxi, // nombre maximal d'itérations dans l'algorithme EM | |
13 | double gamma, // valeur de gamma : puissance des proportions dans la pénalisation pour un Lasso adaptatif | |
14 | double lambda, // valeur du paramètre de régularisation du Lasso | |
15 | const double* X, // régresseurs | |
16 | const double* Y, // réponse | |
17 | double tau, // seuil pour accepter la convergence | |
1d3c1faa | 18 | // OUT parameters (all pointers, to be modified) |
4cab944a BA |
19 | double* phi, // parametre de moyenne renormalisé, calculé par l'EM |
20 | double* rho, // parametre de variance renormalisé, calculé par l'EM | |
21 | double* pi, // parametre des proportions renormalisé, calculé par l'EM | |
22 | double* LLF, // log vraisemblance associé à cet échantillon, pour les valeurs estimées des paramètres | |
23 | double* S, | |
1d3c1faa | 24 | // additional size parameters |
4cab944a BA |
25 | int n, // nombre d'echantillons |
26 | int p, // nombre de covariables | |
27 | int m, // taille de Y (multivarié) | |
28 | int k) // nombre de composantes dans le mélange | |
1d3c1faa BA |
29 | { |
30 | //Initialize outputs | |
31 | copyArray(phiInit, phi, p*m*k); | |
32 | copyArray(rhoInit, rho, m*m*k); | |
33 | copyArray(piInit, pi, k); | |
34 | zeroArray(LLF, maxi); | |
35 | //S is already allocated, and doesn't need to be 'zeroed' | |
4cab944a | 36 | |
1d3c1faa BA |
37 | //Other local variables |
38 | //NOTE: variables order is always [maxi],n,p,m,k | |
4cab944a | 39 | double* gam = (double*)malloc(n*k*sizeof(double)); |
1d3c1faa | 40 | copyArray(gamInit, gam, n*k); |
4cab944a BA |
41 | double* b = (double*)malloc(k*sizeof(double)); |
42 | double* Phi = (double*)malloc(p*m*k*sizeof(double)); | |
43 | double* Rho = (double*)malloc(m*m*k*sizeof(double)); | |
44 | double* Pi = (double*)malloc(k*sizeof(double)); | |
45 | double* gam2 = (double*)malloc(k*sizeof(double)); | |
46 | double* pi2 = (double*)malloc(k*sizeof(double)); | |
47 | double* Gram2 = (double*)malloc(p*p*k*sizeof(double)); | |
48 | double* ps = (double*)malloc(m*k*sizeof(double)); | |
49 | double* nY2 = (double*)malloc(m*k*sizeof(double)); | |
50 | double* ps1 = (double*)malloc(n*m*k*sizeof(double)); | |
51 | double* ps2 = (double*)malloc(p*m*k*sizeof(double)); | |
52 | double* nY21 = (double*)malloc(n*m*k*sizeof(double)); | |
53 | double* Gam = (double*)malloc(n*k*sizeof(double)); | |
54 | double* X2 = (double*)malloc(n*p*k*sizeof(double)); | |
55 | double* Y2 = (double*)malloc(n*m*k*sizeof(double)); | |
1d3c1faa BA |
56 | gsl_matrix* matrix = gsl_matrix_alloc(m, m); |
57 | gsl_permutation* permutation = gsl_permutation_alloc(m); | |
4cab944a BA |
58 | double* YiRhoR = (double*)malloc(m*sizeof(double)); |
59 | double* XiPhiR = (double*)malloc(m*sizeof(double)); | |
60 | double dist = 0.; | |
61 | double dist2 = 0.; | |
62 | int ite = 0; | |
63 | double EPS = 1e-15; | |
64 | double* dotProducts = (double*)malloc(k*sizeof(double)); | |
65 | ||
1d3c1faa BA |
66 | while (ite < mini || (ite < maxi && (dist >= tau || dist2 >= sqrt(tau)))) |
67 | { | |
68 | copyArray(phi, Phi, p*m*k); | |
69 | copyArray(rho, Rho, m*m*k); | |
70 | copyArray(pi, Pi, k); | |
4cab944a BA |
71 | |
72 | // Calculs associés a Y et X | |
73 | for (int r=0; r<k; r++) | |
1d3c1faa | 74 | { |
4cab944a | 75 | for (int mm=0; mm<m; mm++) |
1d3c1faa BA |
76 | { |
77 | //Y2(:,mm,r)=sqrt(gam(:,r)).*transpose(Y(mm,:)); | |
4cab944a BA |
78 | for (int u=0; u<n; u++) |
79 | Y2[ai(u,mm,r,n,m,k)] = sqrt(gam[mi(u,r,n,k)]) * Y[mi(u,mm,m,n)]; | |
1d3c1faa | 80 | } |
4cab944a | 81 | for (int i=0; i<n; i++) |
1d3c1faa BA |
82 | { |
83 | //X2(i,:,r)=X(i,:).*sqrt(gam(i,r)); | |
4cab944a BA |
84 | for (int u=0; u<p; u++) |
85 | X2[ai(i,u,r,n,m,k)] = sqrt(gam[mi(i,r,n,k)]) * X[mi(i,u,n,p)]; | |
1d3c1faa | 86 | } |
4cab944a | 87 | for (int mm=0; mm<m; mm++) |
1d3c1faa BA |
88 | { |
89 | //ps2(:,mm,r)=transpose(X2(:,:,r))*Y2(:,mm,r); | |
4cab944a | 90 | for (int u=0; u<p; u++) |
1d3c1faa | 91 | { |
4cab944a BA |
92 | double dotProduct = 0.; |
93 | for (int v=0; v<n; v++) | |
94 | dotProduct += X2[ai(v,u,r,n,m,k)] * Y2[ai(v,mm,r,n,m,k)]; | |
95 | ps2[ai(u,mm,r,n,m,k)] = dotProduct; | |
1d3c1faa BA |
96 | } |
97 | } | |
4cab944a | 98 | for (int j=0; j<p; j++) |
1d3c1faa | 99 | { |
4cab944a | 100 | for (int s=0; s<p; s++) |
1d3c1faa BA |
101 | { |
102 | //Gram2(j,s,r)=transpose(X2(:,j,r))*(X2(:,s,r)); | |
4cab944a BA |
103 | double dotProduct = 0.; |
104 | for (int u=0; u<n; u++) | |
105 | dotProduct += X2[ai(u,j,r,n,p,k)] * X2[ai(u,s,r,n,p,k)]; | |
106 | Gram2[ai(j,s,r,p,p,k)] = dotProduct; | |
1d3c1faa BA |
107 | } |
108 | } | |
109 | } | |
110 | ||
111 | ///////////// | |
112 | // Etape M // | |
113 | ///////////// | |
4cab944a | 114 | |
1d3c1faa | 115 | // Pour pi |
4cab944a | 116 | for (int r=0; r<k; r++) |
1d3c1faa BA |
117 | { |
118 | //b(r) = sum(sum(abs(phi(:,:,r)))); | |
4cab944a BA |
119 | double sumAbsPhi = 0.; |
120 | for (int u=0; u<p; u++) | |
121 | for (int v=0; v<m; v++) | |
122 | sumAbsPhi += fabs(phi[ai(u,v,r,p,m,k)]); | |
1d3c1faa BA |
123 | b[r] = sumAbsPhi; |
124 | } | |
125 | //gam2 = sum(gam,1); | |
4cab944a | 126 | for (int u=0; u<k; u++) |
1d3c1faa | 127 | { |
4cab944a BA |
128 | double sumOnColumn = 0.; |
129 | for (int v=0; v<n; v++) | |
130 | sumOnColumn += gam[mi(v,u,n,k)]; | |
1d3c1faa BA |
131 | gam2[u] = sumOnColumn; |
132 | } | |
133 | //a=sum(gam*transpose(log(pi))); | |
4cab944a BA |
134 | double a = 0.; |
135 | for (int u=0; u<n; u++) | |
1d3c1faa | 136 | { |
4cab944a BA |
137 | double dotProduct = 0.; |
138 | for (int v=0; v<k; v++) | |
139 | dotProduct += gam[mi(u,v,n,k)] * log(pi[v]); | |
1d3c1faa BA |
140 | a += dotProduct; |
141 | } | |
4cab944a | 142 | |
1d3c1faa | 143 | //tant que les proportions sont negatives |
4cab944a | 144 | int kk = 0; |
1d3c1faa | 145 | int pi2AllPositive = 0; |
4cab944a | 146 | double invN = 1./n; |
1d3c1faa BA |
147 | while (!pi2AllPositive) |
148 | { | |
149 | //pi2(:)=pi(:)+0.1^kk*(1/n*gam2(:)-pi(:)); | |
4cab944a | 150 | for (int r=0; r<k; r++) |
1d3c1faa BA |
151 | pi2[r] = pi[r] + pow(0.1,kk) * (invN*gam2[r] - pi[r]); |
152 | pi2AllPositive = 1; | |
4cab944a | 153 | for (int r=0; r<k; r++) |
1d3c1faa BA |
154 | { |
155 | if (pi2[r] < 0) | |
156 | { | |
157 | pi2AllPositive = 0; | |
158 | break; | |
159 | } | |
160 | } | |
161 | kk++; | |
162 | } | |
4cab944a | 163 | |
1d3c1faa BA |
164 | //t(m) la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante |
165 | //(pi.^gamma)*b | |
4cab944a BA |
166 | double piPowGammaDotB = 0.; |
167 | for (int v=0; v<k; v++) | |
1d3c1faa BA |
168 | piPowGammaDotB += pow(pi[v],gamma) * b[v]; |
169 | //(pi2.^gamma)*b | |
4cab944a BA |
170 | double pi2PowGammaDotB = 0.; |
171 | for (int v=0; v<k; v++) | |
1d3c1faa BA |
172 | pi2PowGammaDotB += pow(pi2[v],gamma) * b[v]; |
173 | //transpose(gam2)*log(pi2) | |
4cab944a BA |
174 | double prodGam2logPi2 = 0.; |
175 | for (int v=0; v<k; v++) | |
1d3c1faa BA |
176 | prodGam2logPi2 += gam2[v] * log(pi2[v]); |
177 | while (-invN*a + lambda*piPowGammaDotB < -invN*prodGam2logPi2 + lambda*pi2PowGammaDotB && kk<1000) | |
178 | { | |
179 | //pi2=pi+0.1^kk*(1/n*gam2-pi); | |
4cab944a | 180 | for (int v=0; v<k; v++) |
1d3c1faa BA |
181 | pi2[v] = pi[v] + pow(0.1,kk) * (invN*gam2[v] - pi[v]); |
182 | //pi2 was updated, so we recompute pi2PowGammaDotB and prodGam2logPi2 | |
4cab944a BA |
183 | pi2PowGammaDotB = 0.; |
184 | for (int v=0; v<k; v++) | |
1d3c1faa | 185 | pi2PowGammaDotB += pow(pi2[v],gamma) * b[v]; |
4cab944a BA |
186 | prodGam2logPi2 = 0.; |
187 | for (int v=0; v<k; v++) | |
1d3c1faa BA |
188 | prodGam2logPi2 += gam2[v] * log(pi2[v]); |
189 | kk++; | |
190 | } | |
4cab944a | 191 | double t = pow(0.1,kk); |
1d3c1faa | 192 | //sum(pi+t*(pi2-pi)) |
4cab944a BA |
193 | double sumPiPlusTbyDiff = 0.; |
194 | for (int v=0; v<k; v++) | |
1d3c1faa BA |
195 | sumPiPlusTbyDiff += (pi[v] + t*(pi2[v] - pi[v])); |
196 | //pi=(pi+t*(pi2-pi))/sum(pi+t*(pi2-pi)); | |
4cab944a | 197 | for (int v=0; v<k; v++) |
1d3c1faa | 198 | pi[v] = (pi[v] + t*(pi2[v] - pi[v])) / sumPiPlusTbyDiff; |
4cab944a | 199 | |
1d3c1faa | 200 | //Pour phi et rho |
4cab944a | 201 | for (int r=0; r<k; r++) |
1d3c1faa | 202 | { |
4cab944a | 203 | for (int mm=0; mm<m; mm++) |
1d3c1faa | 204 | { |
4cab944a | 205 | for (int i=0; i<n; i++) |
1d3c1faa BA |
206 | { |
207 | //< X2(i,:,r) , phi(:,mm,r) > | |
4cab944a BA |
208 | double dotProduct = 0.0; |
209 | for (int u=0; u<p; u++) | |
210 | dotProduct += X2[ai(i,u,r,n,p,k)] * phi[ai(u,mm,r,n,m,k)]; | |
1d3c1faa | 211 | //ps1(i,mm,r)=Y2(i,mm,r)*dot(X2(i,:,r),phi(:,mm,r)); |
4cab944a BA |
212 | ps1[ai(i,mm,r,n,m,k)] = Y2[ai(i,mm,r,n,m,k)] * dotProduct; |
213 | nY21[ai(i,mm,r,n,m,k)] = Y2[ai(i,mm,r,n,m,k)] * Y2[ai(i,mm,r,n,m,k)]; | |
1d3c1faa BA |
214 | } |
215 | //ps(mm,r)=sum(ps1(:,mm,r)); | |
4cab944a BA |
216 | double sumPs1 = 0.0; |
217 | for (int u=0; u<n; u++) | |
218 | sumPs1 += ps1[ai(u,mm,r,n,m,k)]; | |
219 | ps[mi(mm,r,m,k)] = sumPs1; | |
1d3c1faa | 220 | //nY2(mm,r)=sum(nY21(:,mm,r)); |
4cab944a BA |
221 | double sumNy21 = 0.0; |
222 | for (int u=0; u<n; u++) | |
223 | sumNy21 += nY21[ai(u,mm,r,n,m,k)]; | |
224 | nY2[mi(mm,r,m,k)] = sumNy21; | |
1d3c1faa | 225 | //rho(mm,mm,r)=((ps(mm,r)+sqrt(ps(mm,r)^2+4*nY2(mm,r)*(gam2(r))))/(2*nY2(mm,r))); |
4cab944a BA |
226 | rho[ai(mm,mm,k,m,m,k)] = ( ps[mi(mm,r,m,k)] + sqrt( ps[mi(mm,r,m,k)]*ps[mi(mm,r,m,k)] |
227 | + 4*nY2[mi(mm,r,m,k)] * (gam2[r]) ) ) / (2*nY2[mi(mm,r,m,k)]); | |
1d3c1faa BA |
228 | } |
229 | } | |
4cab944a | 230 | for (int r=0; r<k; r++) |
1d3c1faa | 231 | { |
4cab944a | 232 | for (int j=0; j<p; j++) |
1d3c1faa | 233 | { |
4cab944a | 234 | for (int mm=0; mm<m; mm++) |
1d3c1faa BA |
235 | { |
236 | //sum(phi(1:j-1,mm,r).*transpose(Gram2(j,1:j-1,r)))+sum(phi(j+1:p,mm,r).*transpose(Gram2(j,j+1:p,r))) | |
4cab944a BA |
237 | double dotPhiGram2 = 0.0; |
238 | for (int u=0; u<j; u++) | |
239 | dotPhiGram2 += phi[ai(u,mm,r,p,m,k)] * Gram2[ai(j,u,r,p,p,k)]; | |
240 | for (int u=j+1; u<p; u++) | |
241 | dotPhiGram2 += phi[ai(u,mm,r,p,m,k)] * Gram2[ai(j,u,r,p,p,k)]; | |
1d3c1faa BA |
242 | //S(j,r,mm)=-rho(mm,mm,r)*ps2(j,mm,r)+sum(phi(1:j-1,mm,r).*transpose(Gram2(j,1:j-1,r))) |
243 | // +sum(phi(j+1:p,mm,r).*transpose(Gram2(j,j+1:p,r))); | |
4cab944a BA |
244 | S[ai(j,mm,r,p,m,k)] = -rho[ai(mm,mm,r,m,m,k)] * ps2[ai(j,mm,r,p,m,k)] + dotPhiGram2; |
245 | if (fabs(S[ai(j,mm,r,p,m,k)]) <= n*lambda*pow(pi[r],gamma)) | |
246 | phi[ai(j,mm,r,p,m,k)] = 0; | |
247 | else if (S[ai(j,mm,r,p,m,k)] > n*lambda*pow(pi[r],gamma)) | |
248 | phi[ai(j,mm,r,p,m,k)] = (n*lambda*pow(pi[r],gamma) - S[ai(j,mm,r,p,m,k)]) | |
249 | / Gram2[ai(j,j,r,p,p,k)]; | |
1d3c1faa | 250 | else |
4cab944a BA |
251 | phi[ai(j,mm,r,p,m,k)] = -(n*lambda*pow(pi[r],gamma) + S[ai(j,mm,r,p,m,k)]) |
252 | / Gram2[ai(j,j,r,p,p,k)]; | |
1d3c1faa BA |
253 | } |
254 | } | |
255 | } | |
4cab944a | 256 | |
1d3c1faa BA |
257 | ///////////// |
258 | // Etape E // | |
259 | ///////////// | |
4cab944a | 260 | |
1d3c1faa | 261 | int signum; |
4cab944a BA |
262 | double sumLogLLF2 = 0.0; |
263 | for (int i=0; i<n; i++) | |
1d3c1faa | 264 | { |
4cab944a BA |
265 | double sumLLF1 = 0.0; |
266 | double sumGamI = 0.0; | |
267 | double minDotProduct = INFINITY; | |
268 | ||
269 | for (int r=0; r<k; r++) | |
1d3c1faa BA |
270 | { |
271 | //Compute | |
272 | //Gam(i,r) = Pi(r) * det(Rho(:,:,r)) * exp( -1/2 * (Y(i,:)*Rho(:,:,r) - X(i,:)... | |
273 | // *phi(:,:,r)) * transpose( Y(i,:)*Rho(:,:,r) - X(i,:)*phi(:,:,r) ) ); | |
274 | //split in several sub-steps | |
275 | ||
276 | //compute Y(i,:)*rho(:,:,r) | |
4cab944a | 277 | for (int u=0; u<m; u++) |
1d3c1faa BA |
278 | { |
279 | YiRhoR[u] = 0.0; | |
4cab944a BA |
280 | for (int v=0; v<m; v++) |
281 | YiRhoR[u] += Y[imi(i,v,n,m)] * rho[ai(v,u,r,m,m,k)]; | |
1d3c1faa | 282 | } |
4cab944a | 283 | |
1d3c1faa | 284 | //compute X(i,:)*phi(:,:,r) |
4cab944a | 285 | for (int u=0; u<m; u++) |
1d3c1faa BA |
286 | { |
287 | XiPhiR[u] = 0.0; | |
4cab944a BA |
288 | for (int v=0; v<p; v++) |
289 | XiPhiR[u] += X[mi(i,v,n,p)] * phi[ai(v,u,r,p,m,k)]; | |
1d3c1faa | 290 | } |
4cab944a | 291 | |
1d3c1faa BA |
292 | // compute dotProduct < Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) . Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) > |
293 | dotProducts[r] = 0.0; | |
4cab944a | 294 | for (int u=0; u<m; u++) |
1d3c1faa BA |
295 | dotProducts[r] += (YiRhoR[u]-XiPhiR[u]) * (YiRhoR[u]-XiPhiR[u]); |
296 | if (dotProducts[r] < minDotProduct) | |
297 | minDotProduct = dotProducts[r]; | |
298 | } | |
4cab944a BA |
299 | double shift = 0.5*minDotProduct; |
300 | for (int r=0; r<k; r++) | |
1d3c1faa BA |
301 | { |
302 | //compute det(rho(:,:,r)) [TODO: avoid re-computations] | |
4cab944a | 303 | for (int u=0; u<m; u++) |
1d3c1faa | 304 | { |
4cab944a BA |
305 | for (int v=0; v<m; v++) |
306 | matrix->data[u*m+v] = rho[ai(u,v,r,m,m,k)]; | |
1d3c1faa BA |
307 | } |
308 | gsl_linalg_LU_decomp(matrix, permutation, &signum); | |
4cab944a BA |
309 | double detRhoR = gsl_linalg_LU_det(matrix, signum); |
310 | ||
311 | Gam[mi(i,r,n,k)] = pi[r] * detRhoR * exp(-0.5*dotProducts[r] + shift); | |
312 | sumLLF1 += Gam[mi(i,r,n,k)] / pow(2*M_PI,m/2.0); | |
313 | sumGamI += Gam[mi(i,r,n,k)]; | |
1d3c1faa BA |
314 | } |
315 | sumLogLLF2 += log(sumLLF1); | |
4cab944a | 316 | for (int r=0; r<k; r++) |
1d3c1faa BA |
317 | { |
318 | //gam(i,r)=Gam(i,r)/sum(Gam(i,:)); | |
4cab944a BA |
319 | gam[mi(i,r,n,k)] = sumGamI > EPS |
320 | ? Gam[mi(i,r,n,k)] / sumGamI | |
1d3c1faa BA |
321 | : 0.0; |
322 | } | |
323 | } | |
324 | ||
325 | //sum(pen(ite,:)) | |
4cab944a BA |
326 | double sumPen = 0.0; |
327 | for (int r=0; r<k; r++) | |
1d3c1faa BA |
328 | sumPen += pow(pi[r],gamma) * b[r]; |
329 | //LLF(ite)=-1/n*sum(log(LLF2(ite,:)))+lambda*sum(pen(ite,:)); | |
330 | LLF[ite] = -invN * sumLogLLF2 + lambda * sumPen; | |
331 | if (ite == 0) | |
332 | dist = LLF[ite]; | |
333 | else | |
334 | dist = (LLF[ite] - LLF[ite-1]) / (1.0 + fabs(LLF[ite])); | |
335 | ||
336 | //Dist1=max(max((abs(phi-Phi))./(1+abs(phi)))); | |
4cab944a BA |
337 | double Dist1 = 0.0; |
338 | for (int u=0; u<p; u++) | |
1d3c1faa | 339 | { |
4cab944a | 340 | for (int v=0; v<m; v++) |
1d3c1faa | 341 | { |
4cab944a | 342 | for (int w=0; w<k; w++) |
1d3c1faa | 343 | { |
4cab944a BA |
344 | double tmpDist = fabs(phi[ai(u,v,w,p,m,k)]-Phi[ai(u,v,w,p,m,k)]) |
345 | / (1.0+fabs(phi[ai(u,v,w,p,m,k)])); | |
1d3c1faa BA |
346 | if (tmpDist > Dist1) |
347 | Dist1 = tmpDist; | |
348 | } | |
349 | } | |
350 | } | |
351 | //Dist2=max(max((abs(rho-Rho))./(1+abs(rho)))); | |
4cab944a BA |
352 | double Dist2 = 0.0; |
353 | for (int u=0; u<m; u++) | |
1d3c1faa | 354 | { |
4cab944a | 355 | for (int v=0; v<m; v++) |
1d3c1faa | 356 | { |
4cab944a | 357 | for (int w=0; w<k; w++) |
1d3c1faa | 358 | { |
4cab944a BA |
359 | double tmpDist = fabs(rho[ai(u,v,w,m,m,k)]-Rho[ai(u,v,w,m,m,k)]) |
360 | / (1.0+fabs(rho[ai(u,v,w,m,m,k)])); | |
1d3c1faa BA |
361 | if (tmpDist > Dist2) |
362 | Dist2 = tmpDist; | |
363 | } | |
364 | } | |
365 | } | |
366 | //Dist3=max(max((abs(pi-Pi))./(1+abs(Pi)))); | |
4cab944a BA |
367 | double Dist3 = 0.0; |
368 | for (int u=0; u<n; u++) | |
1d3c1faa | 369 | { |
4cab944a | 370 | for (int v=0; v<k; v++) |
1d3c1faa | 371 | { |
4cab944a | 372 | double tmpDist = fabs(pi[v]-Pi[v]) / (1.0+fabs(pi[v])); |
1d3c1faa BA |
373 | if (tmpDist > Dist3) |
374 | Dist3 = tmpDist; | |
375 | } | |
376 | } | |
377 | //dist2=max([max(Dist1),max(Dist2),max(Dist3)]); | |
378 | dist2 = Dist1; | |
379 | if (Dist2 > dist2) | |
380 | dist2 = Dist2; | |
381 | if (Dist3 > dist2) | |
382 | dist2 = Dist3; | |
383 | ||
384 | ite++; | |
385 | } | |
386 | ||
387 | //free memory | |
388 | free(b); | |
389 | free(gam); | |
390 | free(Gam); | |
391 | free(Phi); | |
392 | free(Rho); | |
393 | free(Pi); | |
394 | free(ps); | |
395 | free(nY2); | |
396 | free(ps1); | |
397 | free(nY21); | |
398 | free(Gram2); | |
399 | free(ps2); | |
400 | gsl_matrix_free(matrix); | |
401 | gsl_permutation_free(permutation); | |
402 | free(XiPhiR); | |
403 | free(YiRhoR); | |
404 | free(gam2); | |
405 | free(pi2); | |
406 | free(X2); | |
407 | free(Y2); | |
408 | free(dotProducts); | |
409 | } |