finished merging F_Neighbors.R; TODO: test
authorBenjamin Auder <benjamin.auder@somewhere>
Wed, 29 Mar 2017 17:22:21 +0000 (19:22 +0200)
committerBenjamin Auder <benjamin.auder@somewhere>
Wed, 29 Mar 2017 17:22:21 +0000 (19:22 +0200)
pkg/R/F_Neighbors.R
pkg/R/F_Neighbors2.R [deleted file]
reports/report.gj

index 27cd23a..c55291a 100644 (file)
@@ -22,32 +22,33 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
                        fdays = getNoNA2(data, max(today-memory,1), today-1)
 
                        # Get optional args
+                       local = ifelse(hasArg("local"), list(...)$local, FALSE) #same level + season?
                        simtype = ifelse(hasArg("simtype"), list(...)$simtype, "mix") #or "endo", or "exo"
-                       kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan"
-                       if (hasArg(h_window))
+                       if (hasArg("window"))
                        {
                                return ( private$.predictShapeAux(data,
-                                       fdays, today, horizon, list(...)$h_window, kernel, simtype, TRUE) )
+                                       fdays, today, horizon, local, list(...)$window, simtype, TRUE) )
                        }
 
                        # Indices of similar days for cross-validation; TODO: 20 = magic number
-                       cv_days = getSimilarDaysIndices(today, data, limit=20, same_season=FALSE, days_in=fdays)
+                       cv_days = getSimilarDaysIndices(today, data, limit=20, same_season=FALSE,
+                               days_in=fdays)
 
-                       # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days
-                       errorOnLastNdays = function(h, kernel, simtype)
+                       # Optimize h : h |--> sum of prediction errors on last 45 "similar" days
+                       errorOnLastNdays = function(window, simtype)
                        {
                                error = 0
                                nb_jours = 0
                                for (i in seq_along(cv_days))
                                {
                                        # mix_strategy is never used here (simtype != "mix"), therefore left blank
-                                       prediction = private$.predictShapeAux(data,
-                                               fdays, cv_days[i], horizon, h, kernel, simtype, FALSE)
+                                       prediction = private$.predictShapeAux(data, fdays, cv_days[i], horizon, local,
+                                               window, simtype, FALSE)
                                        if (!is.na(prediction[1]))
                                        {
                                                nb_jours = nb_jours + 1
                                                error = error +
-                                                       mean((data$getCenteredSerie(cv_days[i]+1)[1:horizon] - prediction)^2)
+                                                       mean((data$getSerie(cv_days[i]+1)[1:horizon] - prediction)^2)
                                        }
                                }
                                return (error / nb_jours)
@@ -55,45 +56,87 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 
                        if (simtype != "endo")
                        {
-                               h_best_exo = optimize(
-                                       errorOnLastNdays, c(0,7), kernel=kernel, simtype="exo")$minimum
+                               best_window_exo = optimize(
+                                       errorOnLastNdays, c(0,7), simtype="exo")$minimum
                        }
                        if (simtype != "exo")
                        {
-                               h_best_endo = optimize(
-                                       errorOnLastNdays, c(0,7), kernel=kernel, simtype="endo")$minimum
+                               best_window_endo = optimize(
+                                       errorOnLastNdays, c(0,7), simtype="endo")$minimum
                        }
 
                        if (simtype == "endo")
                        {
-                               return (private$.predictShapeAux(data,
-                                       fdays, today, horizon, h_best_endo, kernel, "endo", TRUE))
+                               return (private$.predictShapeAux(data, fdays, today, horizon, local,
+                                       best_window_endo, "endo", TRUE))
                        }
                        if (simtype == "exo")
                        {
-                               return (private$.predictShapeAux(data,
-                                       fdays, today, horizon, h_best_exo, kernel, "exo", TRUE))
+                               return (private$.predictShapeAux(data, fdays, today, horizon, local,
+                                       best_window_exo, "exo", TRUE))
                        }
                        if (simtype == "mix")
                        {
-                               h_best_mix = c(h_best_endo,h_best_exo)
-                               return(private$.predictShapeAux(data,
-                                       fdays, today, horizon, h_best_mix, kernel, "mix", TRUE))
+                               return(private$.predictShapeAux(data, fdays, today, horizon, local,
+                                       c(best_window_endo,best_window_exo), "mix", TRUE))
                        }
                }
        ),
        private = list(
                # Precondition: "today" is full (no NAs)
-               .predictShapeAux = function(data, fdays, today, horizon, h, kernel, simtype, final_call)
+               .predictShapeAux = function(data, fdays, today, horizon, local, window, simtype,
+                       final_call)
                {
-                       fdays = fdays[ fdays < today ]
-                       # TODO: 3 = magic number
-                       if (length(fdays) < 3)
+                       fdays_cut = fdays[ fdays < today ]
+                       if (length(fdays_cut) <= 1)
                                return (NA)
 
+                       if (local)
+                       {
+                               # Neighbors: days in "same season"; TODO: 60 == magic number...
+                               fdays = getSimilarDaysIndices(today, data, limit=60, same_season=TRUE,
+                                       days_in=fdays_cut)
+                               if (length(fdays) <= 1)
+                                       return (NA)
+                               levelToday = data$getLevel(today)
+                               distances = sapply(fdays, function(i) abs(data$getLevel(i)-levelToday))
+                               #TODO: 2, 3, 5, 10 magic numbers here...
+                               dist_thresh = 2
+                               min_neighbs = min(3,length(fdays))
+                               repeat
+                               {
+                                       same_pollution = (distances <= dist_thresh)
+                                       nb_neighbs = sum(same_pollution)
+                                       if (nb_neighbs >= min_neighbs) #will eventually happen
+                                               break
+                                       dist_thresh = dist_thresh + 3
+                               }
+                               fdays = fdays[same_pollution]
+                               max_neighbs = 10
+                               if (nb_neighbs > max_neighbs)
+                               {
+                                       # Keep only max_neighbs closest neighbors
+                                       fdays = fdays[
+                                               sort(distances[same_pollution],index.return=TRUE)$ix[1:max_neighbs] ]
+                               }
+                               if (length(fdays) == 1) #the other extreme...
+                               {
+                                       if (final_call)
+                                       {
+                                               private$.params$weights <- 1
+                                               private$.params$indices <- fdays
+                                               private$.params$window <- 1
+                                       }
+                                       return ( data$getSerie(fdays[1])[1:horizon] ) #what else?!
+                               }
+                       }
+                       else
+                               fdays = fdays_cut #no conditioning
+
                        if (simtype != "exo")
                        {
-                               h_endo = ifelse(simtype=="mix", h[1], h)
+                               # Compute endogen similarities using given window
+                               window_endo = ifelse(simtype=="mix", window[1], window)
 
                                # Distances from last observed day to days in the past
                                serieToday = data$getSerie(today)
@@ -103,26 +146,18 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
                                })
 
                                sd_dist = sd(distances2)
-                               if (sd_dist < .Machine$double.eps)
+                               if (sd_dist < .25 * sqrt(.Machine$double.eps))
                                {
 #                                      warning("All computed distances are very close: stdev too small")
                                        sd_dist = 1 #mostly for tests... FIXME:
                                }
-                               simils_endo =
-                                       if (kernel=="Gauss")
-                                               exp(-distances2/(sd_dist*h_endo^2))
-                                       else
-                                       {
-                                               # Epanechnikov
-                                               u = 1 - distances2/(sd_dist*h_endo^2)
-                                               u[abs(u)>1] = 0.
-                                               u
-                                       }
+                               simils_endo = exp(-distances2/(sd_dist*window_endo^2))
                        }
 
                        if (simtype != "endo")
                        {
-                               h_exo = ifelse(simtype=="mix", h[2], h)
+                               # Compute exogen similarities using given window
+                               h_exo = ifelse(simtype=="mix", window[2], window)
 
                                M = matrix( nrow=1+length(fdays), ncol=1+length(data$getExo(today)) )
                                M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) )
@@ -149,16 +184,7 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 #                                      warning("All computed distances are very close: stdev too small")
                                        sd_dist = 1 #mostly for tests... FIXME:
                                }
-                               simils_exo =
-                                       if (kernel=="Gauss")
-                                               exp(-distances2/(sd_dist*h_exo^2))
-                                       else
-                                       {
-                                               # Epanechnikov
-                                               u = 1 - distances2/(sd_dist*h_exo^2)
-                                               u[abs(u)>1] = 0.
-                                               u
-                                       }
+                               simils_exo = exp(-distances2/(sd_dist*window_exo^2))
                        }
 
                        similarities =
@@ -172,7 +198,7 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
 
                        prediction = rep(0, horizon)
                        for (i in seq_along(fdays))
-                               prediction = prediction + similarities[i] * data$getCenteredSerie(fdays[i]+1)[1:horizon]
+                               prediction = prediction + similarities[i] * data$getSerie(fdays[i]+1)[1:horizon]
 
                        if (final_call)
                        {
@@ -180,11 +206,11 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
                                private$.params$indices <- fdays
                                private$.params$window <-
                                        if (simtype=="endo")
-                                               h_endo
+                                               window_endo
                                        else if (simtype=="exo")
-                                               h_exo
+                                               window_exo
                                        else #mix
-                                               c(h_endo,h_exo)
+                                               c(window_endo,window_exo)
                        }
 
                        return (prediction)
diff --git a/pkg/R/F_Neighbors2.R b/pkg/R/F_Neighbors2.R
deleted file mode 100644 (file)
index ee40f61..0000000
+++ /dev/null
@@ -1,228 +0,0 @@
-#' @include Forecaster.R
-#'
-#' Neighbors2 Forecaster
-#'
-#' Predict tomorrow as a weighted combination of "futures of the past" days.
-#' Inherits \code{\link{Forecaster}}
-#'
-Neighbors2Forecaster = R6::R6Class("Neighbors2Forecaster",
-       inherit = Forecaster,
-
-       public = list(
-               predictShape = function(data, today, memory, horizon, ...)
-               {
-                       # (re)initialize computed parameters
-                       private$.params <- list("weights"=NA, "indices"=NA, "window"=NA)
-
-                       # Do not forecast on days with NAs (TODO: softer condition...)
-                       if (any(is.na(data$getCenteredSerie(today))))
-                               return (NA)
-
-                       # Determine indices of no-NAs days followed by no-NAs tomorrows
-                       fdays = getNoNA2(data, max(today-memory,1), today-1)
-
-                       # Get optional args
-                       simtype = ifelse(hasArg("simtype"), list(...)$simtype, "mix") #or "endo", or "exo"
-                       kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan"
-                       if (hasArg(h_window))
-                       {
-                               return ( private$.predictShapeAux(data,
-                                       fdays, today, horizon, list(...)$h_window, kernel, simtype, TRUE) )
-                       }
-
-                       # Indices of similar days for cross-validation; TODO: 20 = magic number
-                       cv_days = getSimilarDaysIndices(today, data, limit=20, same_season=FALSE, days_in=fdays)
-
-                       # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days
-                       errorOnLastNdays = function(h, kernel, simtype)
-                       {
-                               error = 0
-                               nb_jours = 0
-                               for (i in seq_along(cv_days))
-                               {
-                                       # mix_strategy is never used here (simtype != "mix"), therefore left blank
-                                       prediction = private$.predictShapeAux(data,
-                                               fdays, cv_days[i], horizon, h, kernel, simtype, FALSE)
-                                       if (!is.na(prediction[1]))
-                                       {
-                                               nb_jours = nb_jours + 1
-                                               error = error + mean((data$getSerie(cv_days[i]+1)[1:horizon] - prediction)^2)
-                                       }
-                               }
-                               return (error / nb_jours)
-                       }
-
-                       if (simtype != "endo")
-                       {
-                               h_best_exo = optimize(
-                                       errorOnLastNdays, c(0,7), kernel=kernel, simtype="exo")$minimum
-                       }
-                       if (simtype != "exo")
-                       {
-                               h_best_endo = optimize(
-                                       errorOnLastNdays, c(0,7), kernel=kernel, simtype="endo")$minimum
-                       }
-
-                       if (simtype == "endo")
-                       {
-                               return (private$.predictShapeAux(data,
-                                       fdays, today, horizon, h_best_endo, kernel, "endo", TRUE))
-                       }
-                       if (simtype == "exo")
-                       {
-                               return (private$.predictShapeAux(data,
-                                       fdays, today, horizon, h_best_exo, kernel, "exo", TRUE))
-                       }
-                       if (simtype == "mix")
-                       {
-                               h_best_mix = c(h_best_endo,h_best_exo)
-                               return(private$.predictShapeAux(data,
-                                       fdays, today, horizon, h_best_mix, kernel, "mix", TRUE))
-                       }
-               }
-       ),
-       private = list(
-               # Precondition: "today" is full (no NAs)
-               .predictShapeAux = function(data, fdays, today, horizon, h, kernel, simtype, final_call)
-               {
-                       fdays_cut = fdays[ fdays < today ]
-                       # TODO: 3 = magic number
-                       if (length(fdays_cut) < 3)
-                               return (NA)
-
-                       # Neighbors: days in "same season"; TODO: 60 == magic number...
-                       fdays = getSimilarDaysIndices(today, data, limit=60, same_season=TRUE, days_in=fdays_cut)
-                       if (length(fdays) <= 1)
-                               return (NA)
-                       levelToday = data$getLevel(today)
-                       distances = sapply(fdays, function(i) abs(data$getLevel(i)-levelToday))
-                       #TODO: 2, 3, 5, 10 magic numbers here...
-                       dist_thresh = 2
-                       min_neighbs = min(3,length(fdays))
-                       repeat
-                       {
-                               same_pollution = (distances <= dist_thresh)
-                               nb_neighbs = sum(same_pollution)
-                               if (nb_neighbs >= min_neighbs) #will eventually happen
-                                       break
-                               dist_thresh = dist_thresh + 3
-                       }
-                       fdays = fdays[same_pollution]
-                       max_neighbs = 10
-                       if (nb_neighbs > max_neighbs)
-                       {
-                               # Keep only max_neighbs closest neighbors
-                               fdays = fdays[ sort(distances[same_pollution],index.return=TRUE)$ix[1:max_neighbs] ]
-                       }
-                       if (length(fdays) == 1) #the other extreme...
-                       {
-                               if (final_call)
-                               {
-                                       private$.params$weights <- 1
-                                       private$.params$indices <- fdays
-                                       private$.params$window <- 1
-                               }
-                               return ( data$getSerie(fdays[1])[1:horizon] ) #what else?!
-                       }
-
-                       if (simtype != "exo")
-                       {
-                               h_endo = ifelse(simtype=="mix", h[1], h)
-
-                               # Distances from last observed day to days in the past
-                               serieToday = data$getSerie(today)
-                               distances2 = sapply(fdays, function(i) {
-                                       delta = serieToday - data$getSerie(i)
-                                       mean(delta^2)
-                               })
-
-                               sd_dist = sd(distances2)
-                               if (sd_dist < .Machine$double.eps)
-                               {
-#                                      warning("All computed distances are very close: stdev too small")
-                                       sd_dist = 1 #mostly for tests... FIXME:
-                               }
-                               simils_endo =
-                                       if (kernel=="Gauss")
-                                               exp(-distances2/(sd_dist*h_endo^2))
-                                       else
-                                       {
-                                               # Epanechnikov
-                                               u = 1 - distances2/(sd_dist*h_endo^2)
-                                               u[abs(u)>1] = 0.
-                                               u
-                                       }
-                       }
-
-                       if (simtype != "endo")
-                       {
-                               h_exo = ifelse(simtype=="mix", h[2], h)
-
-                               M = matrix( nrow=1+length(fdays), ncol=1+length(data$getExo(today)) )
-                               M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) )
-                               for (i in seq_along(fdays))
-                                       M[i+1,] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) )
-
-                               sigma = cov(M) #NOTE: robust covariance is way too slow
-                               # TODO: 10 == magic number; more robust way == det, or always ginv()
-                               sigma_inv =
-                                       if (length(fdays) > 10)
-                                               solve(sigma)
-                                       else
-                                               MASS::ginv(sigma)
-
-                               # Distances from last observed day to days in the past
-                               distances2 = sapply(seq_along(fdays), function(i) {
-                                       delta = M[1,] - M[i+1,]
-                                       delta %*% sigma_inv %*% delta
-                               })
-
-                               sd_dist = sd(distances2)
-                               if (sd_dist < .25 * sqrt(.Machine$double.eps))
-                               {
-#                                      warning("All computed distances are very close: stdev too small")
-                                       sd_dist = 1 #mostly for tests... FIXME:
-                               }
-                               simils_exo =
-                                       if (kernel=="Gauss")
-                                               exp(-distances2/(sd_dist*h_exo^2))
-                                       else
-                                       {
-                                               # Epanechnikov
-                                               u = 1 - distances2/(sd_dist*h_exo^2)
-                                               u[abs(u)>1] = 0.
-                                               u
-                                       }
-                       }
-
-                       similarities =
-                               if (simtype == "exo")
-                                       simils_exo
-                               else if (simtype == "endo")
-                                       simils_endo
-                               else #mix
-                                       simils_endo * simils_exo
-                       similarities = similarities / sum(similarities)
-
-                       prediction = rep(0, horizon)
-                       for (i in seq_along(fdays))
-                               prediction = prediction + similarities[i] * data$getSerie(fdays[i]+1)[1:horizon]
-
-                       if (final_call)
-                       {
-                               prediction = prediction - mean(prediction) #predict centered serie (artificial...)
-                               private$.params$weights <- similarities
-                               private$.params$indices <- fdays
-                               private$.params$window <-
-                                       if (simtype=="endo")
-                                               h_endo
-                                       else if (simtype=="exo")
-                                               h_exo
-                                       else #mix
-                                               c(h_endo,h_exo)
-                       }
-
-                       return (prediction)
-               }
-       )
-)
index 1a6b8d9..5e57660 100644 (file)
@@ -1,11 +1,14 @@
 -----
 <h2>Introduction</h2>
 
-J'ai fait quelques essais dans différentes configurations pour la méthode "Neighbors"
-(la seule dont on a parlé) et sa variante récente appelée pour l'instant "Neighbors2",
-avec simtype="mix" : deux types de similarités prises en compte, puis multiplication des poids.
-Pour Neighbors on prédit le saut (par la moyenne pondérée des sauts passés), et pour Neighbors2
-on n'effectue aucun raccordement (prévision directe).
+J'ai fait quelques essais dans deux configurations pour la méthode "Neighbors"
+(la seule dont on a parlé, incorporant désormais la "variante Bruno/Michel").
+
+ * avec simtype="mix" et raccordement simple ("Zero") dans le cas "non local", i.e. on va
+   chercher des voisins n'importe où du moment qu'ils correspondent à deux jours consécutifs sans
+   valeurs manquantes.
+ * avec simtype="endo" et raccordement "Neighbor" dans le cas "local" : voisins de même niveau de
+   pollution et même saison.
 
 J'ai systématiquement comparé à une approche naïve : la moyenne des lendemains des jours
 "similaires" dans tout le passé, ainsi qu'à la persistence -- reproduisant le jour courant ou
@@ -40,74 +43,77 @@ indices_np = seq(as.Date("2015-04-26"),as.Date("2015-05-02"),"days")
 -----
 <h2 style="color:blue;font-size:2em">${list_titles[i]}</h2>
 -----r
-p_nn = computeForecast(data, ${list_indices[i]}, "Neighbors", "Neighbors", horizon=H)
-p_nn2 = computeForecast(data, ${list_indices[i]}, "Neighbors2", "Zero", horizon=H)
-p_az = computeForecast(data, ${list_indices[i]}, "Average", "Zero", horizon=H)
-p_pz = computeForecast(data, ${list_indices[i]}, "Persistence", "Zero", horizon=H, same_day=${'TRUE' if loop.index < 2 else 'FALSE'})
+p_n = computeForecast(data, ${list_indices[i]}, "Neighbors", "Zero", horizon=H,
+       simtype="mix", local=FALSE)
+p_l = computeForecast(data, ${list_indices[i]}, "Neighbors", "Neighbors", horizon=H,
+       simtype="endo", local=TRUE)
+p_a = computeForecast(data, ${list_indices[i]}, "Average", "Zero", horizon=H)
+p_p = computeForecast(data, ${list_indices[i]}, "Persistence", "Zero", horizon=H,
+       same_day=${'TRUE' if loop.index < 2 else 'FALSE'})
 -----r
-e_nn = computeError(data, p_nn, H)
-e_nn2 = computeError(data, p_nn2, H)
-e_az = computeError(data, p_az, H)
-e_pz = computeError(data, p_pz, H)
+e_n = computeError(data, p_n, H)
+e_l = computeError(data, p_nl, H)
+e_a = computeError(data, p_a, H)
+e_p = computeError(data, p_p, H)
 options(repr.plot.width=9, repr.plot.height=7)
-plotError(list(e_nn, e_pz, e_az, e_nn2), cols=c(1,2,colors()[258], 4))
+plotError(list(e_n, e_p, e_a, e_l), cols=c(1,2,colors()[258], 4))
 
-# Noir: Neighbors, bleu: Neighbors2, vert: moyenne, rouge: persistence
+# Noir: Neighbors non-local, bleu: Neighbors local, vert: moyenne, rouge: persistence
 
-i_np = which.min(e_nn$abs$indices)
-i_p = which.max(e_nn$abs$indices)
+i_np = which.min(e_n$abs$indices)
+i_p = which.max(e_n$abs$indices)
 -----r
 options(repr.plot.width=9, repr.plot.height=4)
 par(mfrow=c(1,2))
 
-plotPredReal(data, p_nn, i_np); title(paste("PredReal nn day",i_np))
-plotPredReal(data, p_nn2, i_p); title(paste("PredReal nn day",i_p))
+plotPredReal(data, p_n, i_np); title(paste("PredReal non-loc day",i_np))
+plotPredReal(data, p_n, i_p); title(paste("PredReal non-loc day",i_p))
 
-plotPredReal(data, p_nn2, i_np); title(paste("PredReal nn2 day",i_np))
-plotPredReal(data, p_nn2, i_p); title(paste("PredReal nn2 day",i_p))
+plotPredReal(data, p_l, i_np); title(paste("PredReal loc day",i_np))
+plotPredReal(data, p_l, i_p); title(paste("PredReal loc day",i_p))
 
-plotPredReal(data, p_az, i_np); title(paste("PredReal az day",i_np))
-plotPredReal(data, p_az, i_p); title(paste("PredReal az day",i_p))
+plotPredReal(data, p_a, i_np); title(paste("PredReal avg day",i_np))
+plotPredReal(data, p_a, i_p); title(paste("PredReal avg day",i_p))
 
 # Bleu: prévue, noir: réalisée
 -----r
 par(mfrow=c(1,2))
-f_np = computeFilaments(data, p_nn, i_np, plot=TRUE); title(paste("Filaments nn day",i_np))
-f_p = computeFilaments(data, p_nn, i_p, plot=TRUE); title(paste("Filaments nn day",i_p))
+f_np_n = computeFilaments(data, p_n, i_np, plot=TRUE); title(paste("Filaments non-loc day",i_np))
+f_p_n = computeFilaments(data, p_n, i_p, plot=TRUE); title(paste("Filaments non-loc day",i_p))
 
-f_np2 = computeFilaments(data, p_nn2, i_np, plot=TRUE); title(paste("Filaments nn2 day",i_np))
-f_p2 = computeFilaments(data, p_nn2, i_p, plot=TRUE); title(paste("Filaments nn2 day",i_p))
+f_np_l = computeFilaments(data, p_l, i_np, plot=TRUE); title(paste("Filaments loc day",i_np))
+f_p_l = computeFilaments(data, p_l, i_p, plot=TRUE); title(paste("Filaments loc day",i_p))
 -----r
 par(mfrow=c(1,2))
-plotFilamentsBox(data, f_np); title(paste("FilBox nn day",i_np))
-plotFilamentsBox(data, f_p); title(paste("FilBox nn day",i_p))
+plotFilamentsBox(data, f_np_n); title(paste("FilBox non-loc day",i_np))
+plotFilamentsBox(data, f_p_n); title(paste("FilBox non-loc day",i_p))
 
 # Generally too few neighbors:
-#plotFilamentsBox(data, f_np2); title(paste("FilBox nn2 day",i_np))
-#plotFilamentsBox(data, f_p2); title(paste("FilBox nn2 day",i_p))
+#plotFilamentsBox(data, f_np_l); title(paste("FilBox loc day",i_np))
+#plotFilamentsBox(data, f_p_l); title(paste("FilBox loc day",i_p))
 -----r
 par(mfrow=c(1,2))
-plotRelVar(data, f_np); title(paste("StdDev nn day",i_np))
-plotRelVar(data, f_p); title(paste("StdDev nn day",i_p))
+plotRelVar(data, f_np_n); title(paste("StdDev non-loc day",i_np))
+plotRelVar(data, f_p_n); title(paste("StdDev non-loc day",i_p))
 
-plotRelVar(data, f_np2); title(paste("StdDev nn2 day",i_np))
-plotRelVar(data, f_p2); title(paste("StdDev nn2 day",i_p))
+plotRelVar(data, f_np_l); title(paste("StdDev loc day",i_np))
+plotRelVar(data, f_p_l); title(paste("StdDev loc day",i_p))
 
 # Variabilité globale en rouge ; sur les 60 voisins (+ lendemains) en noir
 -----r
 par(mfrow=c(1,2))
-plotSimils(p_nn, i_np); title(paste("Weights nn day",i_np))
-plotSimils(p_nn, i_p); title(paste("Weights nn day",i_p))
+plotSimils(p_n, i_np); title(paste("Weights non-loc day",i_np))
+plotSimils(p_n, i_p); title(paste("Weights non-loc day",i_p))
 
-plotSimils(p_nn2, i_np); title(paste("Weights nn2 day",i_np))
-plotSimils(p_nn2, i_p); title(paste("Weights nn2 day",i_p))
+plotSimils(p_l, i_np); title(paste("Weights loc day",i_np))
+plotSimils(p_l, i_p); title(paste("Weights loc day",i_p))
 
 # - pollué à gauche, + pollué à droite
 -----r
-# Fenêtres sélectionnées dans ]0,7] / nn à gauche, nn2 à droite
-p_nn$getParams(i_np)$window
-p_nn$getParams(i_p)$window
+# Fenêtres sélectionnées dans ]0,7] / non-loc à gauche, loc à droite
+p_n$getParams(i_np)$window
+p_n$getParams(i_p)$window
 
-p_nn2$getParams(i_np)$window
-p_nn2$getParams(i_p)$window
+p_l$getParams(i_np)$window
+p_l$getParams(i_p)$window
 % endfor