3 #' Plot a range of curves in data.
5 #' @inheritParams computeError
6 #' @param indices Range of indices (integers or dates)
9 plotCurves <- function(data, indices=seq_len(data$getSize()))
11 series = data$getSeries(indices)
12 yrange = quantile(series, probs=c(0.025,0.975), na.rm=TRUE)
13 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
14 matplot(series, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10")
19 #' Draw error graphs, potentially from several runs of \code{computeForecast()}.
21 #' @param err Error as returned by \code{computeError()}
22 #' @param cols Colors for each error (default: 1,2,3,...)
24 #' @seealso \code{\link{plotCurves}}, \code{\link{plotPredReal}},
25 #' \code{\link{plotSimils}}, \code{\link{plotFbox}}, \code{\link{computeFilaments}},
26 #' \code{\link{plotFilamentsBox}}, \code{\link{plotRelVar}}
29 plotError <- function(err, cols=seq_along(err))
31 if (!is.null(err$abs))
33 par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
36 yrange = range( sapply(1:L, function(i) ( err[[i]]$abs$day ) ), na.rm=TRUE )
37 matplot( sapply( seq_len(L), function(i) err[[i]]$abs$day ), type="l",
38 xlab="Time (hours)", ylab="Mean |y - y_hat|", ylim=yrange, col=cols, lwd=2, lty=1 )
40 yrange = range( sapply(1:L, function(i) ( err[[i]]$abs$indices ) ), na.rm=TRUE )
41 matplot( sapply( seq_len(L), function(i) err[[i]]$abs$indices ), type="l",
42 xlab="Time (days)", ylab="Mean |y - y_hat|", ylim=yrange, col=cols, lwd=2, lty=1 )
44 yrange = range( sapply(1:L, function(i) ( err[[i]]$MAPE$day ) ), na.rm=TRUE )
45 matplot( sapply( seq_len(L), function(i) err[[i]]$MAPE$day ), type="l",
46 xlab="Time (hours)", ylab="Mean MAPE", ylim=yrange, col=cols, lwd=2, lty=1 )
48 yrange = range( sapply(1:L, function(i) ( err[[i]]$MAPE$indices ) ), na.rm=TRUE )
49 matplot( sapply( seq_len(L), function(i) err[[i]]$MAPE$indices ), type="l",
50 xlab="Time (days)", ylab="Mean MAPE", ylim=yrange, col=cols, lwd=2, lty=1 )
53 #' Plot measured / predicted
55 #' Plot measured curve (in black) and predicted curve (in blue).
57 #' @inheritParams computeError
58 #' @param index Index in forecasts (integer or date)
61 plotPredReal <- function(data, pred, index)
63 prediction = pred$getForecast(index)
64 measure = data$getSerie( pred$getIndexInData(index) )[1:length(pred$getForecast(1))]
66 # Remove the common part, where prediction == measure
67 dot_mark <- ifelse(prediction[1]==measure[1],
68 which.max(seq_along(prediction)[prediction==measure]), 0)
69 prediction = prediction[(dot_mark+1):length(prediction)]
70 measure = measure[(dot_mark+1):length(measure)]
72 yrange = range(measure, prediction)
73 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=3)
74 plot(measure, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10")
76 plot(prediction, type="l", col="#0000FF", ylim=yrange, xlab="", ylab="")
81 #' Plot histogram of similarities (weights), for 'Neighbors' method.
83 #' @inheritParams computeError
84 #' @param index Index in forecasts (integer or date)
87 plotSimils <- function(pred, index)
89 weights = pred$getParams(index)$weights
91 stop("plotSimils only works on 'Neighbors' forecasts")
92 par(mfrow=c(1,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
93 small_weights = weights[ weights < 1/length(weights) ]
94 large_weights = weights[ weights >= 1/length(weights) ]
95 hist(small_weights, nclass=25, main="", xlab="Weight < 1/N", ylab="Count")
96 hist(large_weights, nclass=25, main="", xlab="Weight >= 1/N", ylab="Count")
101 #' Draw the functional boxplot on the left, and bivariate plot on the right.
103 #' @inheritParams computeError
104 #' @inheritParams plotCurves
107 plotFbox <- function(data, indices=seq_len(data$getSize()))
109 if (!requireNamespace("rainbow", quietly=TRUE))
110 stop("Functional boxplot requires the rainbow package")
112 series_matrix = data$getSeries(indices)
113 # Remove series with NAs
114 no_NAs_indices = sapply( 1:ncol(series_matrix),
115 function(i) all(!is.na(series_matrix[,i])) )
116 series_matrix = series_matrix[,no_NAs_indices]
118 series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix)
119 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
120 rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10",
121 plotlegend=FALSE, lwd=2)
122 rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE)
127 #' Obtain similar days in the past, and (optionally) plot them -- as black as distances
130 #' @inheritParams computeError
131 #' @param index Index in forecast (integer or date)
132 #' @param limit Number of neighbors to consider
133 #' @param plot Should the result be plotted?
135 #' @return A list with
137 #' \item index : index of the current serie ('today')
138 #' \item neighb_indices : indices of its neighbors
139 #' \item colors : colors of neighbors curves (shades of gray)
143 computeFilaments <- function(data, pred, index, limit=60, plot=TRUE)
145 weights <- pred$getParams(index)$weights
146 if (is.null(weights) || is.na(pred$getParams(index)$weights[1]))
147 stop("computeFilaments requires a serie without NAs")
149 nn <- min(limit, length(weights))
150 sorted_dists = sort(-log(weights), index.return=TRUE)
151 # Compute colors for each neighbor (from darkest to lightest), if weights differ
152 if ( any( weights != weights[1] ) )
154 min_dist = min(sorted_dists$x[1:nn])
155 max_dist = max(sorted_dists$x[1:nn])
156 color_values = floor(19.5*(sorted_dists$x[1:nn]-min_dist)/(max_dist-min_dist)) + 1
157 colors = gray.colors(20,0.1,0.9)[color_values] #TODO: 20 == magic number
160 colors <- rep(colors()[17], length(weights))
164 # Complete series with (past and present) tomorrows
165 ref_serie = c( data$getCenteredSerie( pred$getIndexInData(index)-1 ),
166 data$getCenteredSerie( pred$getIndexInData(index) ) )
167 centered_series = rbind(
168 data$getCenteredSeries( pred$getParams(index)$indices-1 ),
169 data$getCenteredSeries( pred$getParams(index)$indices ) )
170 yrange = range( ref_serie,
171 quantile(centered_series, probs=c(0.025,0.975), na.rm=TRUE) )
172 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2)
175 plot(centered_series[,sorted_dists$ix[i]], ylim=yrange, type="l", col=colors[i],
176 xlab=ifelse(i==1,"Time (hours)",""), ylab=ifelse(i==1,"Centered PM10",""))
179 # Also plot ref curve, in red
180 plot(ref_serie, ylim=yrange, type="l", col="#FF0000", xlab="", ylab="")
181 dot_mark <- 0.5 + which.max( pred$getForecast(1) ==
182 data$getSerie( pred$getIndexInData(1) )[1:length(pred$getForecast(1))] )
183 abline(v=24+dot_mark, lty=2, col=colors()[56], lwd=1)
187 "index"=pred$getIndexInData(index),
188 "neighb_indices"=pred$getParams(index)$indices[sorted_dists$ix[1:nn]],
192 #' Functional boxplot on filaments
194 #' Draw the functional boxplot on filaments obtained by \code{computeFilaments()}.
196 #' @inheritParams computeError
197 #' @param fil Output of \code{computeFilaments}
198 #' @param predict_from First predicted time step
201 plotFilamentsBox = function(data, fil, predict_from)
203 if (!requireNamespace("rainbow", quietly=TRUE))
204 stop("Functional boxplot requires the rainbow package")
206 series_matrix = rbind(
207 data$getSeries(fil$neighb_indices-1), data$getSeries(fil$neighb_indices) )
208 series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix)
210 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
211 rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10",
212 plotlegend=FALSE, lwd=2)
214 # "Magic": http://stackoverflow.com/questions/13842560/get-xlim-from-a-plot-in-r
216 yr <- (usr[4] - usr[3]) / 27
218 plot(c(data$getSerie(fil$index-1),data$getSerie(fil$index)), type="l", lwd=2, lty=2,
219 ylim=c(usr[3] + yr, usr[4] - yr), xlab="", ylab="")
220 abline(v=24+predict_from-0.5, lty=2, col=colors()[56])
223 #' Plot relative conditional variability / absolute variability
225 #' Draw the relative conditional variability / absolute variability based on filaments
226 #' obtained by \code{computeFilaments()}.
228 #' @inheritParams computeError
229 #' @inheritParams plotFilamentsBox
232 plotRelVar = function(data, fil, predict_from)
234 ref_var = c( apply(data$getSeries(fil$neighb_indices-1),1,sd),
235 apply(data$getSeries(fil$neighb_indices),1,sd) )
236 tdays = .getNoNA2(data, 2, fil$index)
238 apply(data$getSeries(tdays-1),1,sd),
239 apply(data$getSeries(tdays),1,sd) )
241 yrange = range(ref_var, global_var)
242 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
243 plot(ref_var, type="l", col=1, lwd=3, ylim=yrange,
244 xlab="Time (hours)", ylab="Standard deviation")
246 plot(global_var, type="l", col=2, lwd=3, ylim=yrange, xlab="", ylab="")
247 abline(v=24+predict_from-0.5, lty=2, col=colors()[56])