c8a33554f92fef75dc327fb526faea9027b4b535
[talweg.git] / pkg / R / F_Neighbors.R
1 #' @include Forecaster.R
2 #'
3 #' Neighbors Forecaster
4 #'
5 #' Predict tomorrow as a weighted combination of "futures of the past" days.
6 #' Inherits \code{\link{Forecaster}}
7 #'
8 NeighborsForecaster = R6::R6Class("NeighborsForecaster",
9 inherit = Forecaster,
10
11 public = list(
12 predictShape = function(data, today, memory, horizon, ...)
13 {
14 # (re)initialize computed parameters
15 private$.params <- list("weights"=NA, "indices"=NA, "window"=NA)
16
17 # Do not forecast on days with NAs (TODO: softer condition...)
18 if (any(is.na(data$getCenteredSerie(today))))
19 return (NA)
20
21 # Determine indices of no-NAs days followed by no-NAs tomorrows
22 fdays = getNoNA2(data, max(today-memory,1), today-1)
23
24 # Get optional args
25 simtype = ifelse(hasArg("simtype"), list(...)$simtype, "mix") #or "endo", or "exo"
26 kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan"
27 if (hasArg(h_window))
28 {
29 return ( private$.predictShapeAux(data,
30 fdays, today, horizon, list(...)$h_window, kernel, simtype, TRUE) )
31 }
32
33 # Indices of similar days for cross-validation; TODO: 20 = magic number
34 cv_days = getSimilarDaysIndices(today, data, limit=20, same_season=FALSE, days_in=fdays)
35
36 # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days
37 errorOnLastNdays = function(h, kernel, simtype)
38 {
39 error = 0
40 nb_jours = 0
41 for (i in seq_along(cv_days))
42 {
43 # mix_strategy is never used here (simtype != "mix"), therefore left blank
44 prediction = private$.predictShapeAux(data,
45 fdays, cv_days[i], horizon, h, kernel, simtype, FALSE)
46 if (!is.na(prediction[1]))
47 {
48 nb_jours = nb_jours + 1
49 error = error +
50 mean((data$getCenteredSerie(cv_days[i]+1)[1:horizon] - prediction)^2)
51 }
52 }
53 return (error / nb_jours)
54 }
55
56 if (simtype != "endo")
57 {
58 h_best_exo = optimize(
59 errorOnLastNdays, c(0,10), kernel=kernel, simtype="exo")$minimum
60 }
61 if (simtype != "exo")
62 {
63 h_best_endo = optimize(
64 errorOnLastNdays, c(0,10), kernel=kernel, simtype="endo")$minimum
65 }
66
67 if (simtype == "endo")
68 {
69 return (private$.predictShapeAux(data,
70 fdays, today, horizon, h_best_endo, kernel, "endo", TRUE))
71 }
72 if (simtype == "exo")
73 {
74 return (private$.predictShapeAux(data,
75 fdays, today, horizon, h_best_exo, kernel, "exo", TRUE))
76 }
77 if (simtype == "mix")
78 {
79 h_best_mix = c(h_best_endo,h_best_exo)
80 return(private$.predictShapeAux(data,
81 fdays, today, horizon, h_best_mix, kernel, "mix", TRUE))
82 }
83 }
84 ),
85 private = list(
86 # Precondition: "today" is full (no NAs)
87 .predictShapeAux = function(data, fdays, today, horizon, h, kernel, simtype, final_call)
88 {
89 fdays = fdays[ fdays < today ]
90 # TODO: 3 = magic number
91 if (length(fdays) < 3)
92 return (NA)
93
94 if (simtype != "exo")
95 {
96 h_endo = ifelse(simtype=="mix", h[1], h)
97
98 # Distances from last observed day to days in the past
99 serieToday = data$getSerie(today)
100 distances2 = sapply(fdays, function(i) {
101 delta = serieToday - data$getSerie(i)
102 mean(delta^2)
103 })
104
105 sd_dist = sd(distances2)
106 if (sd_dist < .Machine$double.eps)
107 {
108 # warning("All computed distances are very close: stdev too small")
109 sd_dist = 1 #mostly for tests... FIXME:
110 }
111 simils_endo =
112 if (kernel=="Gauss")
113 exp(-distances2/(sd_dist*h_endo^2))
114 else
115 {
116 # Epanechnikov
117 u = 1 - distances2/(sd_dist*h_endo^2)
118 u[abs(u)>1] = 0.
119 u
120 }
121 }
122
123 if (simtype != "endo")
124 {
125 h_exo = ifelse(simtype=="mix", h[2], h)
126
127 M = matrix( nrow=1+length(fdays), ncol=1+length(data$getExo(today)) )
128 M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) )
129 for (i in seq_along(fdays))
130 M[i+1,] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) )
131
132 sigma = cov(M) #NOTE: robust covariance is way too slow
133 # TODO: 10 == magic number; more robust way == det, or always ginv()
134 sigma_inv =
135 if (length(fdays) > 10)
136 solve(sigma)
137 else
138 MASS::ginv(sigma)
139
140 # Distances from last observed day to days in the past
141 distances2 = sapply(seq_along(fdays), function(i) {
142 delta = M[1,] - M[i+1,]
143 delta %*% sigma_inv %*% delta
144 })
145
146 sd_dist = sd(distances2)
147 if (sd_dist < .25 * sqrt(.Machine$double.eps))
148 {
149 # warning("All computed distances are very close: stdev too small")
150 sd_dist = 1 #mostly for tests... FIXME:
151 }
152 simils_exo =
153 if (kernel=="Gauss")
154 exp(-distances2/(sd_dist*h_exo^2))
155 else
156 {
157 # Epanechnikov
158 u = 1 - distances2/(sd_dist*h_exo^2)
159 u[abs(u)>1] = 0.
160 u
161 }
162 }
163
164 similarities =
165 if (simtype == "exo")
166 simils_exo
167 else if (simtype == "endo")
168 simils_endo
169 else #mix
170 simils_endo * simils_exo
171
172 prediction = rep(0, horizon)
173 for (i in seq_along(fdays))
174 prediction = prediction + similarities[i] * data$getCenteredSerie(fdays[i]+1)[1:horizon]
175 prediction = prediction / sum(similarities, na.rm=TRUE)
176
177 if (final_call)
178 {
179 private$.params$weights <- similarities
180 private$.params$indices <- fdays
181 private$.params$window <-
182 if (simtype=="endo")
183 h_endo
184 else if (simtype=="exo")
185 h_exo
186 else #mix
187 c(h_endo,h_exo)
188 }
189
190 return (prediction)
191 }
192 )
193 )