| 1 | #' constructionModelesLassoMLE |
| 2 | #' |
| 3 | #' Construct a collection of models with the Lasso-MLE procedure. |
| 4 | #' |
| 5 | #' |
| 6 | #' @param ... |
| 7 | #' |
| 8 | #' @return ... |
| 9 | #' |
| 10 | #' export |
| 11 | constructionModelesLassoMLE = function(phiInit, rhoInit, piInit, gamInit, mini, maxi, |
| 12 | gamma, X, Y, thresh, tau, S, ncores=3, fast=TRUE, verbose=FALSE) |
| 13 | { |
| 14 | if (ncores > 1) |
| 15 | { |
| 16 | cl = parallel::makeCluster(ncores, outfile='') |
| 17 | parallel::clusterExport( cl, envir=environment(), |
| 18 | varlist=c("phiInit","rhoInit","gamInit","mini","maxi","gamma","X","Y","thresh", |
| 19 | "tau","S","ncores","verbose") ) |
| 20 | } |
| 21 | |
| 22 | # Individual model computation |
| 23 | computeAtLambda <- function(lambda) |
| 24 | { |
| 25 | if (ncores > 1) |
| 26 | require("valse") #nodes start with an empty environment |
| 27 | |
| 28 | if (verbose) |
| 29 | print(paste("Computations for lambda=",lambda)) |
| 30 | |
| 31 | n = dim(X)[1] |
| 32 | p = dim(phiInit)[1] |
| 33 | m = dim(phiInit)[2] |
| 34 | k = dim(phiInit)[3] |
| 35 | sel.lambda = S[[lambda]]$selected |
| 36 | # col.sel = which(colSums(sel.lambda)!=0) #if boolean matrix |
| 37 | col.sel <- which( sapply(sel.lambda,length) > 0 ) #if list of selected vars |
| 38 | if (length(col.sel) == 0) |
| 39 | return (NULL) |
| 40 | |
| 41 | # lambda == 0 because we compute the EMV: no penalization here |
| 42 | res = EMGLLF(phiInit[col.sel,,],rhoInit,piInit,gamInit,mini,maxi,gamma,0, |
| 43 | X[,col.sel], Y, tau, fast) |
| 44 | |
| 45 | # Eval dimension from the result + selected |
| 46 | phiLambda2 = res$phi |
| 47 | rhoLambda = res$rho |
| 48 | piLambda = res$pi |
| 49 | phiLambda = array(0, dim = c(p,m,k)) |
| 50 | for (j in seq_along(col.sel)) |
| 51 | phiLambda[col.sel[j],sel.lambda[[j]],] = phiLambda2[j,sel.lambda[[j]],] |
| 52 | dimension = length(unlist(sel.lambda)) |
| 53 | |
| 54 | # Computation of the loglikelihood |
| 55 | densite = vector("double",n) |
| 56 | for (r in 1:k) |
| 57 | { |
| 58 | if (length(col.sel)==1){ |
| 59 | delta = (Y%*%rhoLambda[,,r] - (X[, col.sel]%*%t(phiLambda[col.sel,,r]))) |
| 60 | } else delta = (Y%*%rhoLambda[,,r] - (X[, col.sel]%*%phiLambda[col.sel,,r])) |
| 61 | densite = densite + piLambda[r] * |
| 62 | det(rhoLambda[,,r])/(sqrt(2*base::pi))^m * exp(-diag(tcrossprod(delta))/2.0) |
| 63 | } |
| 64 | llhLambda = c( sum(log(densite)), (dimension+m+1)*k-1 ) |
| 65 | list("phi"= phiLambda, "rho"= rhoLambda, "pi"= piLambda, "llh" = llhLambda) |
| 66 | } |
| 67 | |
| 68 | # For each lambda, computation of the parameters |
| 69 | out = |
| 70 | if (ncores > 1) |
| 71 | parLapply(cl, 1:length(S), computeAtLambda) |
| 72 | else |
| 73 | lapply(1:length(S), computeAtLambda) |
| 74 | |
| 75 | if (ncores > 1) |
| 76 | parallel::stopCluster(cl) |
| 77 | |
| 78 | out |
| 79 | } |