on the way to R6 class + remove truncated days (simplifications)
[talweg.git] / pkg / R / getData.R
CommitLineData
3d69ff21
BA
1#' @title Acquire data in a clean format
2#'
3#' @description Take in input data frames and/or files containing raw data, and timezones, and
4#' output a Data object, roughly corresponding to a list where each cell contains all value
5#' for one day (see \code{?Data}). Current limitation: series (in working_tz) must start at
6#' right after midnight (to keep in sync with exogenous vars)
7#'
8#' @param ts_data Time-series, as a data frame (DB style: 2 columns, first is date/time,
9#' second is value) or a CSV file
10#' @param exo_data Exogenous variables, as a data frame or a CSV file; first comlumn is dates,
11#' next block are measurements for the day, and final block are exogenous forecasts
12#' @param input_tz Timezone in the input files ("GMT" or e.g. "Europe/Paris")
13#' @param date_format How date/time are stored (e.g. year/month/day hour:minutes;
14#' see \code{strptime})
15#' @param working_tz Timezone to work with ("GMT" or e.g. "Europe/Paris")
09cf9c19 16#' @param predict_at When does the prediction take place ? Integer, in hours. Default: 0
f17665c7 17#' @param limit Number of days to extract (default: Inf, for "all")
3d69ff21
BA
18#'
19#' @return An object of class Data
20#'
44a9990b
BA
21#' @examples
22#' ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc.csv",package="talweg"))
23#' exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv",package="talweg"))
24#' getData(ts_data, exo_data, input_tz="Europe/Paris", working_tz="Europe/Paris", limit=150)
3d69ff21 25#' @export
1e20780e
BA
26getData = function(ts_data, exo_data, input_tz="GMT", date_format="%d/%m/%Y %H:%M",
27 working_tz="GMT", predict_at=0, limit=Inf)
3d69ff21
BA
28{
29 # Sanity checks (not full, but sufficient at this stage)
30 if (!is.character(input_tz) || !is.character(working_tz))
31 stop("Bad timezone (see ?timezone)")
32 input_tz = input_tz[1]
33 working_tz = working_tz[1]
6d97bfec
BA
34 if ( (!is.data.frame(ts_data) && !is.character(ts_data)) ||
35 (!is.data.frame(exo_data) && !is.character(exo_data)) )
613a986f 36 stop("Bad time-series / exogenous input (data frame or CSV file)")
3d69ff21
BA
37 if (is.character(ts_data))
38 ts_data = ts_data[1]
6d97bfec
BA
39 if (is.character(exo_data))
40 exo_data = exo_data[1]
09cf9c19
BA
41 predict_at = as.integer(predict_at)[1]
42 if (predict_at<0 || predict_at>23)
43 stop("Bad predict_at (0-23)")
3d69ff21
BA
44 if (!is.character(date_format))
45 stop("Bad date_format (character)")
46 date_format = date_format[1]
47
48 ts_df =
613a986f
BA
49 if (is.character(ts_data))
50 read.csv(ts_data)
51 else
3d69ff21 52 ts_data
3d69ff21 53 exo_df =
613a986f 54 if (is.character(exo_data))
3d69ff21 55 read.csv(exo_data)
613a986f 56 else
3d69ff21 57 exo_data
3d69ff21
BA
58 # Convert to the desired timezone (usually "GMT" or "Europe/Paris")
59 formatted_dates_POSIXlt = strptime(as.character(ts_df[,1]), date_format, tz=input_tz)
60 ts_df[,1] = format(as.POSIXct(formatted_dates_POSIXlt), tz=working_tz, usetz=TRUE)
61
3d69ff21
BA
62 line = 1 #index in PM10 file (24 lines for 1 cell)
63 nb_lines = nrow(ts_df)
64 nb_exos = ( ncol(exo_df) - 1 ) / 2
f17665c7 65 data = Data$new()
3d69ff21
BA
66 i = 1 #index of a cell in data
67 while (line <= nb_lines)
68 {
69 time = c()
70 serie = c()
09cf9c19 71 repeat
3d69ff21 72 {
09cf9c19
BA
73 {
74 time = c(time, ts_df[line,1])
75 serie = c(serie, ts_df[line,2])
76 line = line + 1
77 };
78 if (line >= nb_lines + 1 || as.POSIXlt(ts_df[line-1,1])$hour == predict_at)
79 break
80 }
3d69ff21 81
f17665c7
BA
82 exo = as.data.frame( exo_df[i,2:(1+nb_exos)] )
83 exo_hat = as.data.frame( exo_df[i,(1+nb_exos+1):(1+2*nb_exos)] )
3d69ff21
BA
84 level = mean(serie, na.rm=TRUE)
85 centered_serie = serie - level
f17665c7 86 data$append(time, centered_serie, level, exo, exo_hat)
1e20780e
BA
87 if (i >= limit)
88 break
89 i = i + 1
3d69ff21 90 }
f17665c7
BA
91 if (length(data$getCenteredSerie(1)) < length(data$getCenteredSerie(1)))
92 data$removeFirst()
93 if (length(data$getCenteredSerie( data$getSize() )) <
94 length(data$getCenteredSerie( data$getSize()-1 )))
95 {
96 data$removeLast()
97 }
98
99 data
3d69ff21 100}