Commit | Line | Data |
---|---|---|
3d69ff21 BA |
1 | #' @title Acquire data in a clean format |
2 | #' | |
3 | #' @description Take in input data frames and/or files containing raw data, and timezones, and | |
4 | #' output a Data object, roughly corresponding to a list where each cell contains all value | |
5 | #' for one day (see \code{?Data}). Current limitation: series (in working_tz) must start at | |
6 | #' right after midnight (to keep in sync with exogenous vars) | |
7 | #' | |
8 | #' @param ts_data Time-series, as a data frame (DB style: 2 columns, first is date/time, | |
9 | #' second is value) or a CSV file | |
10 | #' @param exo_data Exogenous variables, as a data frame or a CSV file; first comlumn is dates, | |
11 | #' next block are measurements for the day, and final block are exogenous forecasts | |
12 | #' @param input_tz Timezone in the input files ("GMT" or e.g. "Europe/Paris") | |
13 | #' @param date_format How date/time are stored (e.g. year/month/day hour:minutes; | |
14 | #' see \code{strptime}) | |
15 | #' @param working_tz Timezone to work with ("GMT" or e.g. "Europe/Paris") | |
09cf9c19 | 16 | #' @param predict_at When does the prediction take place ? Integer, in hours. Default: 0 |
f17665c7 | 17 | #' @param limit Number of days to extract (default: Inf, for "all") |
3d69ff21 BA |
18 | #' |
19 | #' @return An object of class Data | |
20 | #' | |
44a9990b BA |
21 | #' @examples |
22 | #' ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc.csv",package="talweg")) | |
23 | #' exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv",package="talweg")) | |
24 | #' getData(ts_data, exo_data, input_tz="Europe/Paris", working_tz="Europe/Paris", limit=150) | |
3d69ff21 | 25 | #' @export |
1e20780e BA |
26 | getData = function(ts_data, exo_data, input_tz="GMT", date_format="%d/%m/%Y %H:%M", |
27 | working_tz="GMT", predict_at=0, limit=Inf) | |
3d69ff21 BA |
28 | { |
29 | # Sanity checks (not full, but sufficient at this stage) | |
30 | if (!is.character(input_tz) || !is.character(working_tz)) | |
31 | stop("Bad timezone (see ?timezone)") | |
32 | input_tz = input_tz[1] | |
33 | working_tz = working_tz[1] | |
6d97bfec BA |
34 | if ( (!is.data.frame(ts_data) && !is.character(ts_data)) || |
35 | (!is.data.frame(exo_data) && !is.character(exo_data)) ) | |
613a986f | 36 | stop("Bad time-series / exogenous input (data frame or CSV file)") |
3d69ff21 BA |
37 | if (is.character(ts_data)) |
38 | ts_data = ts_data[1] | |
6d97bfec BA |
39 | if (is.character(exo_data)) |
40 | exo_data = exo_data[1] | |
09cf9c19 BA |
41 | predict_at = as.integer(predict_at)[1] |
42 | if (predict_at<0 || predict_at>23) | |
43 | stop("Bad predict_at (0-23)") | |
3d69ff21 BA |
44 | if (!is.character(date_format)) |
45 | stop("Bad date_format (character)") | |
46 | date_format = date_format[1] | |
47 | ||
48 | ts_df = | |
613a986f BA |
49 | if (is.character(ts_data)) |
50 | read.csv(ts_data) | |
51 | else | |
3d69ff21 | 52 | ts_data |
3d69ff21 | 53 | exo_df = |
613a986f | 54 | if (is.character(exo_data)) |
3d69ff21 | 55 | read.csv(exo_data) |
613a986f | 56 | else |
3d69ff21 | 57 | exo_data |
3d69ff21 BA |
58 | # Convert to the desired timezone (usually "GMT" or "Europe/Paris") |
59 | formatted_dates_POSIXlt = strptime(as.character(ts_df[,1]), date_format, tz=input_tz) | |
60 | ts_df[,1] = format(as.POSIXct(formatted_dates_POSIXlt), tz=working_tz, usetz=TRUE) | |
61 | ||
3d69ff21 BA |
62 | line = 1 #index in PM10 file (24 lines for 1 cell) |
63 | nb_lines = nrow(ts_df) | |
64 | nb_exos = ( ncol(exo_df) - 1 ) / 2 | |
f17665c7 | 65 | data = Data$new() |
3d69ff21 BA |
66 | i = 1 #index of a cell in data |
67 | while (line <= nb_lines) | |
68 | { | |
69 | time = c() | |
70 | serie = c() | |
09cf9c19 | 71 | repeat |
3d69ff21 | 72 | { |
09cf9c19 BA |
73 | { |
74 | time = c(time, ts_df[line,1]) | |
75 | serie = c(serie, ts_df[line,2]) | |
76 | line = line + 1 | |
77 | }; | |
78 | if (line >= nb_lines + 1 || as.POSIXlt(ts_df[line-1,1])$hour == predict_at) | |
79 | break | |
80 | } | |
3d69ff21 | 81 | |
f17665c7 BA |
82 | exo = as.data.frame( exo_df[i,2:(1+nb_exos)] ) |
83 | exo_hat = as.data.frame( exo_df[i,(1+nb_exos+1):(1+2*nb_exos)] ) | |
3d69ff21 BA |
84 | level = mean(serie, na.rm=TRUE) |
85 | centered_serie = serie - level | |
f17665c7 | 86 | data$append(time, centered_serie, level, exo, exo_hat) |
1e20780e BA |
87 | if (i >= limit) |
88 | break | |
89 | i = i + 1 | |
3d69ff21 | 90 | } |
f17665c7 BA |
91 | if (length(data$getCenteredSerie(1)) < length(data$getCenteredSerie(1))) |
92 | data$removeFirst() | |
93 | if (length(data$getCenteredSerie( data$getSize() )) < | |
94 | length(data$getCenteredSerie( data$getSize()-1 ))) | |
95 | { | |
96 | data$removeLast() | |
97 | } | |
98 | ||
99 | data | |
3d69ff21 | 100 | } |