Commit | Line | Data |
---|---|---|
5c49f6ce BA |
1 | #' @include Forecaster.R |
2 | #' | |
3 | #' Neighbors2 Forecaster | |
4 | #' | |
5 | #' Predict tomorrow as a weighted combination of "futures of the past" days. | |
6 | #' Inherits \code{\link{Forecaster}} | |
7 | #' | |
8 | Neighbors2Forecaster = R6::R6Class("Neighbors2Forecaster", | |
9 | inherit = Forecaster, | |
10 | ||
11 | public = list( | |
ee8b1b4e BA |
12 | predictSerie = function(data, today, memory, horizon, ...) |
13 | { | |
14 | # This method predict shape + level at the same time, all in next call | |
15 | self$predictShape(data, today, memory, horizon, ...) | |
16 | }, | |
5c49f6ce BA |
17 | predictShape = function(data, today, memory, horizon, ...) |
18 | { | |
19 | # (re)initialize computed parameters | |
20 | private$.params <- list("weights"=NA, "indices"=NA, "window"=NA) | |
21 | ||
22 | # Do not forecast on days with NAs (TODO: softer condition...) | |
23 | if (any(is.na(data$getCenteredSerie(today)))) | |
24 | return (NA) | |
25 | ||
26 | # Determine indices of no-NAs days followed by no-NAs tomorrows | |
9db234c5 | 27 | fdays = getNoNA2(data, max(today-memory,1), today-1) |
5c49f6ce BA |
28 | |
29 | # Get optional args | |
5e838b3e | 30 | simtype = ifelse(hasArg("simtype"), list(...)$simtype, "mix") #or "endo", or "exo" |
5c49f6ce BA |
31 | kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan" |
32 | if (hasArg(h_window)) | |
33 | { | |
34 | return ( private$.predictShapeAux(data, | |
5e838b3e | 35 | fdays, today, horizon, list(...)$h_window, kernel, simtype, TRUE) ) |
5c49f6ce BA |
36 | } |
37 | ||
9db234c5 | 38 | # Indices of similar days for cross-validation; TODO: 45 = magic number |
ee8b1b4e | 39 | sdays = getSimilarDaysIndices(today, data, limit=45, same_season=FALSE) |
9db234c5 | 40 | |
5e838b3e BA |
41 | cv_days = intersect(fdays,sdays) |
42 | # Limit to 20 most recent matching days (TODO: 20 == magic number) | |
43 | cv_days = sort(cv_days,decreasing=TRUE)[1:min(20,length(cv_days))] | |
44 | ||
5c49f6ce | 45 | # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days |
5e838b3e | 46 | errorOnLastNdays = function(h, kernel, simtype) |
5c49f6ce BA |
47 | { |
48 | error = 0 | |
49 | nb_jours = 0 | |
5e838b3e | 50 | for (i in seq_along(cv_days)) |
5c49f6ce BA |
51 | { |
52 | # mix_strategy is never used here (simtype != "mix"), therefore left blank | |
5e838b3e BA |
53 | prediction = private$.predictShapeAux(data, |
54 | fdays, cv_days[i], horizon, h, kernel, simtype, FALSE) | |
5c49f6ce BA |
55 | if (!is.na(prediction[1])) |
56 | { | |
57 | nb_jours = nb_jours + 1 | |
58 | error = error + | |
5e838b3e | 59 | mean((data$getSerie(cv_days[i]+1)[1:horizon] - prediction)^2) |
5c49f6ce BA |
60 | } |
61 | } | |
62 | return (error / nb_jours) | |
63 | } | |
64 | ||
5e838b3e BA |
65 | if (simtype != "endo") |
66 | { | |
67 | h_best_exo = optimize( | |
68 | errorOnLastNdays, c(0,10), kernel=kernel, simtype="exo")$minimum | |
69 | } | |
70 | if (simtype != "exo") | |
71 | { | |
72 | h_best_endo = optimize( | |
73 | errorOnLastNdays, c(0,10), kernel=kernel, simtype="endo")$minimum | |
74 | } | |
75 | ||
76 | if (simtype == "endo") | |
77 | { | |
78 | return (private$.predictShapeAux(data, | |
79 | fdays, today, horizon, h_best_endo, kernel, "endo", TRUE)) | |
80 | } | |
81 | if (simtype == "exo") | |
82 | { | |
83 | return (private$.predictShapeAux(data, | |
84 | fdays, today, horizon, h_best_exo, kernel, "exo", TRUE)) | |
85 | } | |
86 | if (simtype == "mix") | |
87 | { | |
88 | h_best_mix = c(h_best_endo,h_best_exo) | |
89 | return(private$.predictShapeAux(data, | |
90 | fdays, today, horizon, h_best_mix, kernel, "mix", TRUE)) | |
91 | } | |
5c49f6ce BA |
92 | } |
93 | ), | |
94 | private = list( | |
95 | # Precondition: "today" is full (no NAs) | |
5e838b3e | 96 | .predictShapeAux = function(data, fdays, today, horizon, h, kernel, simtype, final_call) |
5c49f6ce BA |
97 | { |
98 | fdays = fdays[ fdays < today ] | |
99 | # TODO: 3 = magic number | |
ee8b1b4e | 100 | if (length(fdays) < 3) |
5c49f6ce BA |
101 | return (NA) |
102 | ||
9db234c5 | 103 | # Neighbors: days in "same season" |
ee8b1b4e | 104 | sdays = getSimilarDaysIndices(today, data, limit=45, same_season=TRUE) |
9db234c5 | 105 | indices = intersect(fdays,sdays) |
ee8b1b4e BA |
106 | if (length(indices) <= 1) |
107 | return (NA) | |
9db234c5 | 108 | levelToday = data$getLevel(today) |
5e838b3e | 109 | distances = sapply(indices, function(i) abs(data$getLevel(i)-levelToday)) |
ee8b1b4e | 110 | # 2 and 5 below == magic numbers (determined by Bruno & Michel) |
9db234c5 | 111 | same_pollution = (distances <= 2) |
ee8b1b4e | 112 | if (sum(same_pollution) == 0) |
5c49f6ce | 113 | { |
9db234c5 | 114 | same_pollution = (distances <= 5) |
ee8b1b4e | 115 | if (sum(same_pollution) == 0) |
9db234c5 | 116 | return (NA) |
5c49f6ce | 117 | } |
9db234c5 | 118 | indices = indices[same_pollution] |
a866acb3 BA |
119 | if (length(indices) == 1) |
120 | { | |
121 | if (final_call) | |
122 | { | |
123 | private$.params$weights <- 1 | |
124 | private$.params$indices <- indices | |
125 | private$.params$window <- 1 | |
126 | } | |
127 | return ( data$getSerie(indices[1])[1:horizon] ) #what else?! | |
128 | } | |
129 | ||
5e838b3e BA |
130 | if (simtype != "exo") |
131 | { | |
132 | h_endo = ifelse(simtype=="mix", h[1], h) | |
9db234c5 | 133 | |
5e838b3e BA |
134 | # Distances from last observed day to days in the past |
135 | serieToday = data$getSerie(today) | |
136 | distances2 = sapply(indices, function(i) { | |
137 | delta = serieToday - data$getSerie(i) | |
138 | mean(delta^2) | |
139 | }) | |
5c49f6ce | 140 | |
5e838b3e BA |
141 | sd_dist = sd(distances2) |
142 | if (sd_dist < .Machine$double.eps) | |
143 | { | |
5c49f6ce | 144 | # warning("All computed distances are very close: stdev too small") |
5e838b3e BA |
145 | sd_dist = 1 #mostly for tests... FIXME: |
146 | } | |
147 | simils_endo = | |
148 | if (kernel=="Gauss") | |
149 | exp(-distances2/(sd_dist*h_endo^2)) | |
150 | else | |
151 | { | |
152 | # Epanechnikov | |
153 | u = 1 - distances2/(sd_dist*h_endo^2) | |
154 | u[abs(u)>1] = 0. | |
155 | u | |
156 | } | |
5c49f6ce | 157 | } |
5e838b3e BA |
158 | |
159 | if (simtype != "endo") | |
160 | { | |
161 | h_exo = ifelse(simtype=="mix", h[2], h) | |
162 | ||
163 | M = matrix( nrow=1+length(indices), ncol=1+length(data$getExo(today)) ) | |
164 | M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) ) | |
165 | for (i in seq_along(indices)) | |
166 | M[i+1,] = c( data$getLevel(indices[i]), as.double(data$getExo(indices[i])) ) | |
167 | ||
168 | sigma = cov(M) #NOTE: robust covariance is way too slow | |
ee8b1b4e BA |
169 | # TODO: 10 == magic number; more robust way == det, or always ginv() |
170 | sigma_inv = | |
171 | if (length(indices) > 10) | |
172 | solve(sigma) | |
173 | else | |
174 | MASS::ginv(sigma) | |
a866acb3 | 175 | |
5e838b3e BA |
176 | # Distances from last observed day to days in the past |
177 | distances2 = sapply(seq_along(indices), function(i) { | |
178 | delta = M[1,] - M[i+1,] | |
179 | delta %*% sigma_inv %*% delta | |
180 | }) | |
181 | ||
182 | sd_dist = sd(distances2) | |
183 | if (sd_dist < .25 * sqrt(.Machine$double.eps)) | |
5c49f6ce | 184 | { |
5e838b3e BA |
185 | # warning("All computed distances are very close: stdev too small") |
186 | sd_dist = 1 #mostly for tests... FIXME: | |
5c49f6ce | 187 | } |
5e838b3e BA |
188 | simils_exo = |
189 | if (kernel=="Gauss") | |
190 | exp(-distances2/(sd_dist*h_exo^2)) | |
191 | else | |
192 | { | |
193 | # Epanechnikov | |
194 | u = 1 - distances2/(sd_dist*h_exo^2) | |
195 | u[abs(u)>1] = 0. | |
196 | u | |
197 | } | |
198 | } | |
5c49f6ce | 199 | |
5e838b3e BA |
200 | similarities = |
201 | if (simtype == "exo") | |
202 | simils_exo | |
203 | else if (simtype == "endo") | |
204 | simils_endo | |
205 | else #mix | |
206 | simils_endo * simils_exo | |
5c49f6ce BA |
207 | |
208 | prediction = rep(0, horizon) | |
9db234c5 BA |
209 | for (i in seq_along(indices)) |
210 | prediction = prediction + similarities[i] * data$getSerie(indices[i]+1)[1:horizon] | |
5c49f6ce BA |
211 | prediction = prediction / sum(similarities, na.rm=TRUE) |
212 | ||
213 | if (final_call) | |
214 | { | |
215 | private$.params$weights <- similarities | |
a866acb3 | 216 | private$.params$indices <- indices |
5e838b3e BA |
217 | private$.params$window <- |
218 | if (simtype=="endo") | |
219 | h_endo | |
220 | else if (simtype=="exo") | |
221 | h_exo | |
222 | else #mix | |
223 | c(h_endo,h_exo) | |
5c49f6ce BA |
224 | } |
225 | ||
226 | return (prediction) | |
227 | } | |
228 | ) | |
229 | ) |