cleaning - fix getSimilarDaysIndices ; to finish
[talweg.git] / pkg / R / F_Neighbors2.R
CommitLineData
5c49f6ce
BA
1#' @include Forecaster.R
2#'
3#' Neighbors2 Forecaster
4#'
5#' Predict tomorrow as a weighted combination of "futures of the past" days.
6#' Inherits \code{\link{Forecaster}}
7#'
8Neighbors2Forecaster = R6::R6Class("Neighbors2Forecaster",
9 inherit = Forecaster,
10
11 public = list(
a866acb3
BA
12# predictSerie = function(data, today, memory, horizon, ...)
13# {
14# # Parameters (potentially) computed during shape prediction stage
15# predicted_shape = self$predictShape(data, today, memory, horizon, ...)
16## predicted_delta = private$.pjump(data,today,memory,horizon,private$.params,...)
17# # Predicted shape is aligned it on the end of current day + jump
18## predicted_shape+tail(data$getSerie(today),1)-predicted_shape[1]+predicted_delta
19# predicted_shape
20# },
5c49f6ce
BA
21 predictShape = function(data, today, memory, horizon, ...)
22 {
23 # (re)initialize computed parameters
24 private$.params <- list("weights"=NA, "indices"=NA, "window"=NA)
25
26 # Do not forecast on days with NAs (TODO: softer condition...)
27 if (any(is.na(data$getCenteredSerie(today))))
28 return (NA)
29
30 # Determine indices of no-NAs days followed by no-NAs tomorrows
9db234c5 31 fdays = getNoNA2(data, max(today-memory,1), today-1)
5c49f6ce
BA
32
33 # Get optional args
5e838b3e 34 simtype = ifelse(hasArg("simtype"), list(...)$simtype, "mix") #or "endo", or "exo"
5c49f6ce
BA
35 kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan"
36 if (hasArg(h_window))
37 {
38 return ( private$.predictShapeAux(data,
5e838b3e 39 fdays, today, horizon, list(...)$h_window, kernel, simtype, TRUE) )
5c49f6ce
BA
40 }
41
9db234c5
BA
42 # Indices of similar days for cross-validation; TODO: 45 = magic number
43 sdays = getSimilarDaysIndices(today, limit=45, same_season=FALSE)
44
5e838b3e
BA
45 cv_days = intersect(fdays,sdays)
46 # Limit to 20 most recent matching days (TODO: 20 == magic number)
47 cv_days = sort(cv_days,decreasing=TRUE)[1:min(20,length(cv_days))]
48
5c49f6ce 49 # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days
5e838b3e 50 errorOnLastNdays = function(h, kernel, simtype)
5c49f6ce
BA
51 {
52 error = 0
53 nb_jours = 0
5e838b3e 54 for (i in seq_along(cv_days))
5c49f6ce
BA
55 {
56 # mix_strategy is never used here (simtype != "mix"), therefore left blank
5e838b3e
BA
57 prediction = private$.predictShapeAux(data,
58 fdays, cv_days[i], horizon, h, kernel, simtype, FALSE)
5c49f6ce
BA
59 if (!is.na(prediction[1]))
60 {
61 nb_jours = nb_jours + 1
62 error = error +
5e838b3e 63 mean((data$getSerie(cv_days[i]+1)[1:horizon] - prediction)^2)
5c49f6ce
BA
64 }
65 }
66 return (error / nb_jours)
67 }
68
5e838b3e
BA
69 if (simtype != "endo")
70 {
71 h_best_exo = optimize(
72 errorOnLastNdays, c(0,10), kernel=kernel, simtype="exo")$minimum
73 }
74 if (simtype != "exo")
75 {
76 h_best_endo = optimize(
77 errorOnLastNdays, c(0,10), kernel=kernel, simtype="endo")$minimum
78 }
79
80 if (simtype == "endo")
81 {
82 return (private$.predictShapeAux(data,
83 fdays, today, horizon, h_best_endo, kernel, "endo", TRUE))
84 }
85 if (simtype == "exo")
86 {
87 return (private$.predictShapeAux(data,
88 fdays, today, horizon, h_best_exo, kernel, "exo", TRUE))
89 }
90 if (simtype == "mix")
91 {
92 h_best_mix = c(h_best_endo,h_best_exo)
93 return(private$.predictShapeAux(data,
94 fdays, today, horizon, h_best_mix, kernel, "mix", TRUE))
95 }
5c49f6ce
BA
96 }
97 ),
98 private = list(
99 # Precondition: "today" is full (no NAs)
5e838b3e 100 .predictShapeAux = function(data, fdays, today, horizon, h, kernel, simtype, final_call)
5c49f6ce
BA
101 {
102 fdays = fdays[ fdays < today ]
103 # TODO: 3 = magic number
a866acb3 104 if (length(fdays) < 1)
5c49f6ce
BA
105 return (NA)
106
9db234c5
BA
107 # Neighbors: days in "same season"
108 sdays = getSimilarDaysIndices(today, limit=45, same_season=TRUE, data)
109 indices = intersect(fdays,sdays)
110 levelToday = data$getLevel(today)
5e838b3e 111 distances = sapply(indices, function(i) abs(data$getLevel(i)-levelToday))
9db234c5 112 same_pollution = (distances <= 2)
a866acb3 113 if (sum(same_pollution) < 1) #TODO: 3 == magic number
5c49f6ce 114 {
9db234c5 115 same_pollution = (distances <= 5)
a866acb3 116 if (sum(same_pollution) < 1)
9db234c5 117 return (NA)
5c49f6ce 118 }
9db234c5
BA
119 indices = indices[same_pollution]
120
a866acb3
BA
121 #TODO: we shouldn't need that block
122 if (length(indices) == 1)
123 {
124 if (final_call)
125 {
126 private$.params$weights <- 1
127 private$.params$indices <- indices
128 private$.params$window <- 1
129 }
130 return ( data$getSerie(indices[1])[1:horizon] ) #what else?!
131 }
132
5e838b3e
BA
133 if (simtype != "exo")
134 {
135 h_endo = ifelse(simtype=="mix", h[1], h)
9db234c5 136
5e838b3e
BA
137 # Distances from last observed day to days in the past
138 serieToday = data$getSerie(today)
139 distances2 = sapply(indices, function(i) {
140 delta = serieToday - data$getSerie(i)
141 mean(delta^2)
142 })
5c49f6ce 143
5e838b3e
BA
144 sd_dist = sd(distances2)
145 if (sd_dist < .Machine$double.eps)
146 {
5c49f6ce 147# warning("All computed distances are very close: stdev too small")
5e838b3e
BA
148 sd_dist = 1 #mostly for tests... FIXME:
149 }
150 simils_endo =
151 if (kernel=="Gauss")
152 exp(-distances2/(sd_dist*h_endo^2))
153 else
154 {
155 # Epanechnikov
156 u = 1 - distances2/(sd_dist*h_endo^2)
157 u[abs(u)>1] = 0.
158 u
159 }
5c49f6ce 160 }
5e838b3e
BA
161
162 if (simtype != "endo")
163 {
164 h_exo = ifelse(simtype=="mix", h[2], h)
165
166 M = matrix( nrow=1+length(indices), ncol=1+length(data$getExo(today)) )
167 M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) )
168 for (i in seq_along(indices))
169 M[i+1,] = c( data$getLevel(indices[i]), as.double(data$getExo(indices[i])) )
170
171 sigma = cov(M) #NOTE: robust covariance is way too slow
172# sigma_inv = solve(sigma) #TODO: use pseudo-inverse if needed?
173 sigma_inv = MASS::ginv(sigma)
a866acb3 174
5e838b3e
BA
175 # Distances from last observed day to days in the past
176 distances2 = sapply(seq_along(indices), function(i) {
177 delta = M[1,] - M[i+1,]
178 delta %*% sigma_inv %*% delta
179 })
180
181 sd_dist = sd(distances2)
182 if (sd_dist < .25 * sqrt(.Machine$double.eps))
5c49f6ce 183 {
5e838b3e
BA
184# warning("All computed distances are very close: stdev too small")
185 sd_dist = 1 #mostly for tests... FIXME:
5c49f6ce 186 }
5e838b3e
BA
187 simils_exo =
188 if (kernel=="Gauss")
189 exp(-distances2/(sd_dist*h_exo^2))
190 else
191 {
192 # Epanechnikov
193 u = 1 - distances2/(sd_dist*h_exo^2)
194 u[abs(u)>1] = 0.
195 u
196 }
197 }
5c49f6ce 198
5e838b3e
BA
199 similarities =
200 if (simtype == "exo")
201 simils_exo
202 else if (simtype == "endo")
203 simils_endo
204 else #mix
205 simils_endo * simils_exo
5c49f6ce
BA
206
207 prediction = rep(0, horizon)
9db234c5
BA
208 for (i in seq_along(indices))
209 prediction = prediction + similarities[i] * data$getSerie(indices[i]+1)[1:horizon]
5c49f6ce
BA
210 prediction = prediction / sum(similarities, na.rm=TRUE)
211
212 if (final_call)
213 {
214 private$.params$weights <- similarities
a866acb3 215 private$.params$indices <- indices
5e838b3e
BA
216 private$.params$window <-
217 if (simtype=="endo")
218 h_endo
219 else if (simtype=="exo")
220 h_exo
221 else #mix
222 c(h_endo,h_exo)
5c49f6ce
BA
223 }
224
225 return (prediction)
226 }
227 )
228)