Commit | Line | Data |
---|---|---|
24ed5d83 BA |
1 | #include <stdlib.h> |
2 | #include <math.h> | |
3 | #include <stdbool.h> | |
4 | ||
5 | #ifndef M_PI | |
6 | #define M_PI 3.14159265358979323846 | |
7 | #endif | |
8 | ||
9 | // n: number of synchrones, m: length of a synchrone | |
10 | float computeWerDist(float* s1, float* s2, int n, int m) | |
11 | { | |
12 | //TODO: automatic tune of all these parameters ? (for other users) | |
13 | int nvoice = 4; | |
14 | //noctave 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(synchrones)) | |
15 | int noctave = 13 | |
16 | // 4 here represent 2^5 = 32 half-hours ~ 1 day | |
17 | //NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?) | |
18 | //R: scalevector <- 2^(4:(noctave * nvoice) / nvoice + 1) | |
19 | int* scalevector = (int*)malloc( (noctave*nvoice-4 + 1) * sizeof(int)) | |
20 | for (int i=4; i<=noctave*nvoice; i++) | |
21 | scalevector[i-4] = pow(2., (float)i/nvoice + 1.); | |
22 | //condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1 | |
23 | int s0 = 2; | |
24 | double w0 = 2*M_PI; | |
25 | bool scaled = false; | |
26 | int s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) | |
27 | int totnoct = noctave + as.integer(s0log/nvoice) + 1 | |
28 | ||
29 | ||
30 | ||
31 | ||
32 | ||
33 | ///TODO: continue | |
34 | ||
35 | ||
36 | ||
37 | computeCWT = function(i) | |
38 | { | |
39 | if (verbose) | |
40 | cat(paste("+++ Compute Rwave::cwt() on serie ",i,"\n", sep="")) | |
41 | ts <- scale(ts(synchrones[i,]), center=TRUE, scale=scaled) | |
42 | totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0) | |
43 | ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] | |
44 | #Normalization | |
45 | sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) | |
46 | sqres <- sweep(ts.cwt,2,sqs,'*') | |
47 | sqres / max(Mod(sqres)) | |
48 | } | |
49 | ||
50 | if (parll) | |
51 | { | |
52 | cl = parallel::makeCluster(ncores_clust) | |
53 | parallel::clusterExport(cl, | |
54 | varlist=c("synchrones","totnoct","nvoice","w0","s0log","noctave","s0","verbose"), | |
55 | envir=environment()) | |
56 | } | |
57 | ||
58 | # (normalized) observations node with CWT | |
59 | Xcwt4 <- | |
60 | if (parll) | |
61 | parallel::parLapply(cl, seq_len(n), computeCWT) | |
62 | else | |
63 | lapply(seq_len(n), computeCWT) | |
64 | ||
65 | if (parll) | |
66 | parallel::stopCluster(cl) | |
67 | ||
68 | Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") | |
69 | fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!) | |
70 | if (verbose) | |
71 | cat("*** Compute WER distances from CWT\n") | |
72 | ||
73 | #TODO: computeDistances(i,j), et répartir les n(n-1)/2 couples d'indices | |
74 | #là c'est trop déséquilibré | |
75 | ||
76 | computeDistancesLineI = function(i) | |
77 | { | |
78 | if (verbose) | |
79 | cat(paste(" Line ",i,"\n", sep="")) | |
80 | for (j in (i+1):n) | |
81 | { | |
82 | #TODO: 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C | |
83 | num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) | |
84 | WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE) | |
85 | WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) | |
86 | wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) ) | |
87 | if (parll) | |
88 | synchronicity::lock(m) | |
89 | Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2)) | |
90 | Xwer_dist[j,i] <- Xwer_dist[i,j] | |
91 | if (parll) | |
92 | synchronicity::unlock(m) | |
93 | } | |
94 | Xwer_dist[i,i] = 0. | |
95 | } | |
96 | ||
97 | parll = (requireNamespace("synchronicity",quietly=TRUE) | |
98 | && parll && Sys.info()['sysname'] != "Windows") | |
99 | if (parll) | |
100 | m <- synchronicity::boost.mutex() | |
101 | ||
102 | ignored <- | |
103 | if (parll) | |
104 | { | |
105 | parallel::mclapply(seq_len(n-1), computeDistancesLineI, | |
106 | mc.cores=ncores_clust, mc.allow.recursive=FALSE) | |
107 | } | |
108 | else | |
109 | lapply(seq_len(n-1), computeDistancesLineI) | |
110 | Xwer_dist[n,n] = 0. | |
111 | ||
112 | mat_dists = matrix(nrow=n, ncol=n) | |
113 | #TODO: avoid this loop? | |
114 | for (i in 1:n) | |
115 | mat_dists[i,] = Xwer_dist[i,] | |
116 | mat_dists | |
117 |