1 context("Check that getParamsDirs behaves as expected")
3 test_that("on input of sufficient size, beta is estimated accurately enough", {
9 betas_ref = array( c(1,0,0,1 , 1,-2,3,1), dim=c(2,2,2) )
10 for (i in 1:(dim(betas_ref)[3]))
12 beta_ref = betas_ref[,,i]
13 #all parameters are supposed to be of norm 1: thus, normalize beta_ref
14 norm2 = sqrt(colSums(beta_ref^2))
15 beta_ref = beta_ref / norm2[col(beta_ref)]
17 io = generateSampleIO(n, d, K, Pr, beta_ref)
18 beta = getParamsDirs(io$X, io$Y, K)
19 betas = .labelSwitchingAlign(
20 array( c(beta_ref,beta), dim=c(d,K,2) ), compare_to="first", ls_mode="exact")
22 #Some traces: 0 is not well estimated, but others are OK
23 cat("\n\nReference parameter matrix:\n")
25 cat("Estimated parameter matrix:\n")
27 cat("Difference norm (Matrix norm ||.||_1, max. abs. sum on a column)\n")
28 diff_norm = norm(beta_ref - betas[,,2])
31 #NOTE: 0.5 is loose threshold, but values around 0.3 are expected...
32 expect_that( diff_norm, is_less_than(0.5) )