From: emilie Date: Wed, 22 Feb 2017 12:18:16 +0000 (+0100) Subject: un peu de nettoyage, mais rien de fou X-Git-Url: https://git.auder.net/variants/%24%7Bvname%7D/current/pieces/cp.svg?a=commitdiff_plain;h=22d21a222df140221657af24d71fe05af54a6adc;p=valse.git un peu de nettoyage, mais rien de fou --- diff --git a/DESCRIPTION b/DESCRIPTION index cdda4e4..f8f5a29 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -2,7 +2,13 @@ Package: valse Title: VAriabLe SElection with mixture of models Date: 2016-12-01 Version: 0.1-0 -Description: TODO +Description: Two methods are implemented to cluster data with finite mixture regression models. + Those procedures deal with high-dimensional covariates and responses through a variable selection + procedure based on the Lasso estimator. A low-rank constraint could be added, computed for the Lasso-Rank procedure. + A collection of models is constructed, varying the level of sparsity and the number of clusters, and a model is selected + using a model selection criterion (slope heuristic, BIC or AIC). + Details of the procedure are provided in 'Model-based clustering for high-dimensional data. Application to functional data' + by Emilie Devijver, published in Advances in Data Analysis and Clustering (2016) Author: Benjamin Auder [aut,cre], Benjamin Goehry [aut] Emilie Devijver [aut] diff --git a/R/main.R b/R/main.R index 4c4e87c..42852d3 100644 --- a/R/main.R +++ b/R/main.R @@ -27,9 +27,10 @@ Valse = setRefClass( kmin = "integer", # maximum number of components in the mixture kmax = "integer", - rangmin = "integer", - rangmax = "integer", - + # ranks for the Lasso-Rank procedure + rank.min = "integer", + rank.max = "integer", + # Computed through the workflow # initialisation for the reparametrized conditional mean parameter @@ -54,7 +55,7 @@ Valse = setRefClass( Pi = "numeric", #immutable (TODO:?) - seuil = "numeric" + thresh = "numeric" ), methods = list( @@ -75,9 +76,9 @@ Valse = setRefClass( eps <<- ifelse (hasArg("eps"), eps, 1e-6) kmin <<- ifelse (hasArg("kmin"), kmin, as.integer(2)) kmax <<- ifelse (hasArg("kmax"), kmax, as.integer(3)) - rangmin <<- ifelse (hasArg("rangmin"), rangmin, as.integer(2)) - rangmax <<- ifelse (hasArg("rangmax"), rangmax, as.integer(3)) - seuil <<- 1e-15 #immutable (TODO:?) + rank.min <<- ifelse (hasArg("rank.min"), rank.min, as.integer(2)) + rank.max <<- ifelse (hasArg("rank.max"), rank.max, as.integer(3)) + thresh <<- 1e-15 #immutable (TODO:?) }, ################################## @@ -114,7 +115,7 @@ Valse = setRefClass( #from the grid: A1 corresponding to selected variables, and #A2 corresponding to unselected variables. params = selectiontotale( - phiInit,rhoInit,piInit,tauInit,mini,maxi,gamma,gridLambda,X,Y,seuil,eps) + phiInit,rhoInit,piInit,tauInit,mini,maxi,gamma,gridLambda,X,Y,thresh,eps) A1 <<- params$A1 A2 <<- params$A2 Rho <<- params$Rho @@ -128,7 +129,7 @@ Valse = setRefClass( #compute parameter estimations, with the Maximum Likelihood #Estimator, restricted on selected variables. return ( constructionModelesLassoMLE( - phiInit,rhoInit,piInit,tauInit,mini,maxi,gamma,gridLambda,X,Y,seuil,eps,A1,A2) ) + phiInit,rhoInit,piInit,tauInit,mini,maxi,gamma,gridLambda,X,Y,thresh,eps,A1,A2) ) }, runProcedure2 = function() @@ -138,14 +139,14 @@ Valse = setRefClass( #compute parameter estimations, with the Low Rank #Estimator, restricted on selected variables. return ( constructionModelesLassoRank(Pi,Rho,mini,maxi,X,Y,eps, - A1,rangmin,rangmax) ) + A1,rank.min,rank.max) ) }, run = function() { "main loop: over all k and all lambda" - # Run the all procedure, 1 with the + # Run the whole procedure, 1 with the #maximum likelihood refitting, and 2 with the Low Rank refitting. p = dim(phiInit)[1] m = dim(phiInit)[2] @@ -205,6 +206,7 @@ Valse = setRefClass( # #TODO # #model = odel(...) # end + # Give at least the slope heuristic and BIC, and AIC ? ) )