Commit | Line | Data |
---|---|---|
b7cd987d BA |
1 | #' (De)Serialization of a [big]matrix or data stream |
2 | #' | |
3 | #' \code{binarize()} serializes a matrix or CSV file with minimal overhead, into a | |
4 | #' binary file. \code{getDataInFile()} achieves the inverse task: she retrieves (ASCII) | |
5 | #' data rows from indices in the binary file. Finally, \code{binarizeTransform()} | |
6 | #' serialize transformations of all data chunks. To use it a data-retrieval function | |
7 | #' must be provided -- thus \code{binarize} will most likely be used first | |
8 | #' (and then a function defined to seek in generated binary file) | |
9 | #' | |
10 | #' @param data_ascii Matrix (by columns) or CSV file or connection (by rows) | |
11 | #' @param data_bin_file Name of binary file on output of \code{binarize()} | |
12 | #' or input of \code{getDataInFile()} | |
13 | #' @param nb_per_chunk Number of lines to process in one batch | |
14 | #' @param getData Function to retrieve data chunks | |
15 | #' @param transform Transformation function to apply on data chunks | |
16 | #' @param indices Indices of the lines to retrieve | |
17 | #' @inheritParams claws | |
18 | #' | |
19 | #' @return For \code{getDataInFile()}, a matrix with columns corresponding to the | |
20 | #' requested indices. \code{binarizeTransform()} returns the number of processed lines. | |
21 | #' \code{binarize()} is designed to serialize in several calls, thus returns nothing. | |
22 | #' | |
23 | #' @name de_serialize | |
24 | #' @rdname de_serialize | |
25 | #' @aliases binarize binarizeTransform getDataInFile | |
26 | NULL | |
27 | ||
28 | #' @rdname de_serialize | |
29 | #' @export | |
30 | binarize <- function(data_ascii, data_bin_file, nb_per_chunk, | |
31 | sep=",", nbytes=4, endian=.Platform$endian) | |
32 | { | |
33 | # data_ascii can be of two types: [big.]matrix, or connection | |
34 | if (is.character(data_ascii)) | |
35 | data_ascii <- file(data_ascii, open="r") | |
36 | else if (methods::is(data_ascii,"connection") && !isOpen(data_ascii)) | |
37 | open(data_ascii) | |
38 | is_matrix <- !methods::is(data_ascii,"connection") | |
39 | ||
40 | # At first call, the length of a stored row is written. So it's important to determine | |
41 | # if the serialization process already started. | |
42 | first_write <- (!file.exists(data_bin_file) || file.info(data_bin_file)$size == 0) | |
43 | ||
44 | # Open the binary file for writing (or 'append' if already exists) | |
45 | data_bin <- file(data_bin_file, open=ifelse(first_write,"wb","ab")) | |
46 | ||
47 | if (first_write) | |
48 | { | |
49 | # Write data length on first call: number of items always on 8 bytes | |
50 | writeBin(0L, data_bin, size=8, endian=endian) | |
51 | if (is_matrix) | |
52 | data_length <- nrow(data_ascii) | |
53 | else #connection | |
54 | { | |
55 | # Read the first line to know data length, and write it then | |
56 | data_line <- scan(data_ascii, double(), sep=sep, nlines=1, quiet=TRUE) | |
57 | writeBin(data_line, data_bin, size=nbytes, endian=endian) | |
58 | data_length <- length(data_line) | |
59 | } | |
60 | } | |
61 | ||
62 | if (is_matrix) | |
63 | { | |
64 | # Data is processed by chunks; although this may not be so useful for (normal) matrix | |
65 | # input, it could for a file-backed big.matrix. It's easier to follow a unified pattern. | |
66 | index <- 1 | |
67 | } | |
68 | repeat | |
69 | { | |
70 | if (is_matrix) | |
71 | { | |
72 | data_chunk <- | |
73 | if (index <= ncol(data_ascii)) | |
74 | as.double(data_ascii[,index:min(ncol(data_ascii),index+nb_per_chunk-1)]) | |
75 | else | |
76 | double(0) | |
77 | index <- index + nb_per_chunk | |
78 | } | |
79 | else #connection | |
80 | data_chunk <- scan(data_ascii, double(), sep=sep, nlines=nb_per_chunk, quiet=TRUE) | |
81 | ||
82 | # Data size is unknown in the case of a connection | |
83 | if (length(data_chunk)==0) | |
84 | break | |
85 | ||
86 | # Write this chunk of data to the binary file | |
87 | writeBin(data_chunk, data_bin, size=nbytes, endian=endian) | |
88 | } | |
89 | ||
90 | if (first_write) | |
91 | { | |
92 | # Write data_length, == (file_size-1) / (nbytes*nbWritten) at offset 0 in data_bin | |
93 | ignored <- seek(data_bin, 0) | |
94 | writeBin(data_length, data_bin, size=8, endian=endian) | |
95 | } | |
96 | close(data_bin) | |
97 | ||
98 | if ( ! is_matrix ) | |
99 | close(data_ascii) | |
100 | } | |
101 | ||
102 | #' @rdname de_serialize | |
103 | #' @export | |
104 | binarizeTransform <- function(getData, transform, data_bin_file, nb_per_chunk, | |
105 | nbytes=4, endian=.Platform$endian) | |
106 | { | |
107 | nb_items <- 0 #side-effect: store the number of transformed items | |
108 | index <- 1 | |
109 | repeat | |
110 | { | |
111 | # Retrieve a chunk of data in a binary file (generally obtained by binarize()) | |
112 | data_chunk <- getData((index-1)+seq_len(nb_per_chunk)) | |
113 | if (is.null(data_chunk)) | |
114 | break | |
115 | ||
116 | # Apply transformation on the current chunk (by columns) | |
117 | transformed_chunk <- transform(data_chunk) | |
118 | ||
119 | # Save the result in binary format | |
120 | binarize(transformed_chunk, data_bin_file, nb_per_chunk, ",", nbytes, endian) | |
121 | ||
122 | index <- index + nb_per_chunk | |
123 | nb_items <- nb_items + ncol(data_chunk) | |
124 | } | |
125 | nb_items #number of transformed items | |
126 | } | |
127 | ||
128 | #' @rdname de_serialize | |
129 | #' @export | |
130 | getDataInFile <- function(indices, data_bin_file, nbytes=4, endian=.Platform$endian) | |
131 | { | |
132 | data_bin <- file(data_bin_file, "rb") #source binary file | |
133 | ||
134 | data_size <- file.info(data_bin_file)$size #number of bytes in the file | |
135 | # data_length: length of a vector in the binary file (first element, 8 bytes) | |
136 | data_length <- readBin(data_bin, "integer", n=1, size=8, endian=endian) | |
137 | ||
138 | # Seek all 'indices' columns in the binary file, using data_length and nbytes | |
139 | # to compute the offset ( index i at 8 + i*data_length*nbytes ) | |
140 | data_ascii <- do.call( cbind, lapply( indices, function(i) { | |
141 | offset <- 8+(i-1)*data_length*nbytes | |
142 | if (offset >= data_size) | |
143 | return (NULL) | |
144 | ignored <- seek(data_bin, offset) #position cursor at computed offset | |
145 | readBin(data_bin, "double", n=data_length, size=nbytes, endian=endian) | |
146 | } ) ) | |
147 | close(data_bin) | |
148 | ||
149 | data_ascii #retrieved data, in columns | |
150 | } |