| 1 | /* knncpp.h |
| 2 | * |
| 3 | * Author: Fabian Meyer |
| 4 | * Created On: 22 Aug 2021 |
| 5 | * License: MIT |
| 6 | */ |
| 7 | |
| 8 | #ifndef KNNCPP_H_ |
| 9 | #define KNNCPP_H_ |
| 10 | |
| 11 | #include <Eigen/Geometry> |
| 12 | #include <vector> |
| 13 | #include <map> |
| 14 | #include <set> |
| 15 | |
| 16 | #ifdef KNNCPP_FLANN |
| 17 | |
| 18 | #include <flann/flann.hpp> |
| 19 | |
| 20 | #endif |
| 21 | |
| 22 | namespace knncpp |
| 23 | { |
| 24 | /******************************************************** |
| 25 | * Matrix Definitions |
| 26 | *******************************************************/ |
| 27 | |
| 28 | typedef typename Eigen::MatrixXd::Index Index; |
| 29 | |
| 30 | typedef Eigen::Matrix<Index, Eigen::Dynamic, 1> Vectori; |
| 31 | typedef Eigen::Matrix<Index, 2, 1> Vector2i; |
| 32 | typedef Eigen::Matrix<Index, 3, 1> Vector3i; |
| 33 | typedef Eigen::Matrix<Index, 4, 1> Vector4i; |
| 34 | typedef Eigen::Matrix<Index, 5, 1> Vector5i; |
| 35 | |
| 36 | typedef Eigen::Matrix<Index, Eigen::Dynamic, Eigen::Dynamic> Matrixi; |
| 37 | typedef Eigen::Matrix<Index, 2, 2> Matrix2i; |
| 38 | typedef Eigen::Matrix<Index, 3, 3> Matrix3i; |
| 39 | typedef Eigen::Matrix<Index, 4, 4> Matrix4i; |
| 40 | typedef Eigen::Matrix<Index, 5, 5> Matrix5i; |
| 41 | |
| 42 | typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> Matrixf; |
| 43 | typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> Matrixd; |
| 44 | |
| 45 | /******************************************************** |
| 46 | * Distance Functors |
| 47 | *******************************************************/ |
| 48 | |
| 49 | /** Manhatten distance functor. |
| 50 | * This the same as the L1 minkowski distance but more efficient. |
| 51 | * @see EuclideanDistance, ChebyshevDistance, MinkowskiDistance */ |
| 52 | template <typename Scalar> |
| 53 | struct ManhattenDistance |
| 54 | { |
| 55 | /** Compute the unrooted distance between two vectors. |
| 56 | * @param lhs vector on left hand side |
| 57 | * @param rhs vector on right hand side */ |
| 58 | template<typename DerivedA, typename DerivedB> |
| 59 | Scalar operator()(const Eigen::MatrixBase<DerivedA> &lhs, |
| 60 | const Eigen::MatrixBase<DerivedB> &rhs) const |
| 61 | { |
| 62 | static_assert( |
| 63 | std::is_same<typename Eigen::MatrixBase<DerivedA>::Scalar,Scalar>::value, |
| 64 | "distance scalar and input matrix A must have same type"); |
| 65 | static_assert( |
| 66 | std::is_same<typename Eigen::MatrixBase<DerivedB>::Scalar, Scalar>::value, |
| 67 | "distance scalar and input matrix B must have same type"); |
| 68 | |
| 69 | return (lhs - rhs).cwiseAbs().sum(); |
| 70 | } |
| 71 | |
| 72 | /** Compute the unrooted distance between two scalars. |
| 73 | * @param lhs scalar on left hand side |
| 74 | * @param rhs scalar on right hand side */ |
| 75 | Scalar operator()(const Scalar lhs, |
| 76 | const Scalar rhs) const |
| 77 | { |
| 78 | return std::abs(lhs - rhs); |
| 79 | } |
| 80 | |
| 81 | /** Compute the root of a unrooted distance value. |
| 82 | * @param value unrooted distance value */ |
| 83 | Scalar operator()(const Scalar val) const |
| 84 | { |
| 85 | return val; |
| 86 | } |
| 87 | }; |
| 88 | |
| 89 | /** Euclidean distance functor. |
| 90 | * This the same as the L2 minkowski distance but more efficient. |
| 91 | * @see ManhattenDistance, ChebyshevDistance, MinkowskiDistance */ |
| 92 | template <typename Scalar> |
| 93 | struct EuclideanDistance |
| 94 | { |
| 95 | /** Compute the unrooted distance between two vectors. |
| 96 | * @param lhs vector on left hand side |
| 97 | * @param rhs vector on right hand side */ |
| 98 | template<typename DerivedA, typename DerivedB> |
| 99 | Scalar operator()(const Eigen::MatrixBase<DerivedA> &lhs, |
| 100 | const Eigen::MatrixBase<DerivedB> &rhs) const |
| 101 | { |
| 102 | static_assert( |
| 103 | std::is_same<typename Eigen::MatrixBase<DerivedA>::Scalar,Scalar>::value, |
| 104 | "distance scalar and input matrix A must have same type"); |
| 105 | static_assert( |
| 106 | std::is_same<typename Eigen::MatrixBase<DerivedB>::Scalar, Scalar>::value, |
| 107 | "distance scalar and input matrix B must have same type"); |
| 108 | |
| 109 | return (lhs - rhs).cwiseAbs2().sum(); |
| 110 | } |
| 111 | |
| 112 | /** Compute the unrooted distance between two scalars. |
| 113 | * @param lhs scalar on left hand side |
| 114 | * @param rhs scalar on right hand side */ |
| 115 | Scalar operator()(const Scalar lhs, |
| 116 | const Scalar rhs) const |
| 117 | { |
| 118 | Scalar diff = lhs - rhs; |
| 119 | return diff * diff; |
| 120 | } |
| 121 | |
| 122 | /** Compute the root of a unrooted distance value. |
| 123 | * @param value unrooted distance value */ |
| 124 | Scalar operator()(const Scalar val) const |
| 125 | { |
| 126 | return std::sqrt(val); |
| 127 | } |
| 128 | }; |
| 129 | |
| 130 | /** General minkowski distance functor. |
| 131 | * The infinite version is only available through the chebyshev distance. |
| 132 | * @see ManhattenDistance, EuclideanDistance, ChebyshevDistance */ |
| 133 | template <typename Scalar, int P> |
| 134 | struct MinkowskiDistance |
| 135 | { |
| 136 | struct Pow |
| 137 | { |
| 138 | Scalar operator()(const Scalar val) const |
| 139 | { |
| 140 | Scalar result = 1; |
| 141 | for(int i = 0; i < P; ++i) |
| 142 | result *= val; |
| 143 | return result; |
| 144 | } |
| 145 | }; |
| 146 | |
| 147 | /** Compute the unrooted distance between two vectors. |
| 148 | * @param lhs vector on left hand side |
| 149 | * @param rhs vector on right hand side */ |
| 150 | template<typename DerivedA, typename DerivedB> |
| 151 | Scalar operator()(const Eigen::MatrixBase<DerivedA> &lhs, |
| 152 | const Eigen::MatrixBase<DerivedB> &rhs) const |
| 153 | { |
| 154 | static_assert( |
| 155 | std::is_same<typename Eigen::MatrixBase<DerivedA>::Scalar,Scalar>::value, |
| 156 | "distance scalar and input matrix A must have same type"); |
| 157 | static_assert( |
| 158 | std::is_same<typename Eigen::MatrixBase<DerivedB>::Scalar, Scalar>::value, |
| 159 | "distance scalar and input matrix B must have same type"); |
| 160 | |
| 161 | return (lhs - rhs).cwiseAbs().unaryExpr(MinkowskiDistance::Pow()).sum(); |
| 162 | } |
| 163 | |
| 164 | /** Compute the unrooted distance between two scalars. |
| 165 | * @param lhs scalar on left hand side |
| 166 | * @param rhs scalar on right hand side */ |
| 167 | Scalar operator()(const Scalar lhs, |
| 168 | const Scalar rhs) const |
| 169 | { |
| 170 | return std::pow(std::abs(lhs - rhs), P);; |
| 171 | } |
| 172 | |
| 173 | /** Compute the root of a unrooted distance value. |
| 174 | * @param value unrooted distance value */ |
| 175 | Scalar operator()(const Scalar val) const |
| 176 | { |
| 177 | return std::pow(val, 1 / static_cast<Scalar>(P)); |
| 178 | } |
| 179 | }; |
| 180 | |
| 181 | /** Chebyshev distance functor. |
| 182 | * This distance is the same as infinity minkowski distance. |
| 183 | * @see ManhattenDistance, EuclideanDistance, MinkowskiDistance */ |
| 184 | template<typename Scalar> |
| 185 | struct ChebyshevDistance |
| 186 | { |
| 187 | /** Compute the unrooted distance between two vectors. |
| 188 | * @param lhs vector on left hand side |
| 189 | * @param rhs vector on right hand side */ |
| 190 | template<typename DerivedA, typename DerivedB> |
| 191 | Scalar operator()(const Eigen::MatrixBase<DerivedA> &lhs, |
| 192 | const Eigen::MatrixBase<DerivedB> &rhs) const |
| 193 | { |
| 194 | static_assert( |
| 195 | std::is_same<typename Eigen::MatrixBase<DerivedA>::Scalar,Scalar>::value, |
| 196 | "distance scalar and input matrix A must have same type"); |
| 197 | static_assert( |
| 198 | std::is_same<typename Eigen::MatrixBase<DerivedB>::Scalar, Scalar>::value, |
| 199 | "distance scalar and input matrix B must have same type"); |
| 200 | |
| 201 | return (lhs - rhs).cwiseAbs().maxCoeff(); |
| 202 | } |
| 203 | |
| 204 | /** Compute the unrooted distance between two scalars. |
| 205 | * @param lhs scalar on left hand side |
| 206 | * @param rhs scalar on right hand side */ |
| 207 | Scalar operator()(const Scalar lhs, |
| 208 | const Scalar rhs) const |
| 209 | { |
| 210 | return std::abs(lhs - rhs); |
| 211 | } |
| 212 | |
| 213 | /** Compute the root of a unrooted distance value. |
| 214 | * @param value unrooted distance value */ |
| 215 | Scalar operator()(const Scalar val) const |
| 216 | { |
| 217 | return val; |
| 218 | } |
| 219 | }; |
| 220 | |
| 221 | /** Hamming distance functor. |
| 222 | * The distance vectors have to be of integral type and should hold the |
| 223 | * information vectors as bitmasks. |
| 224 | * Performs a XOR operation on the vectors and counts the number of set |
| 225 | * ones. */ |
| 226 | template<typename Scalar> |
| 227 | struct HammingDistance |
| 228 | { |
| 229 | static_assert(std::is_integral<Scalar>::value, |
| 230 | "HammingDistance requires integral Scalar type"); |
| 231 | |
| 232 | struct XOR |
| 233 | { |
| 234 | Scalar operator()(const Scalar lhs, const Scalar rhs) const |
| 235 | { |
| 236 | return lhs ^ rhs; |
| 237 | } |
| 238 | }; |
| 239 | |
| 240 | struct BitCount |
| 241 | { |
| 242 | Scalar operator()(const Scalar lhs) const |
| 243 | { |
| 244 | Scalar copy = lhs; |
| 245 | Scalar result = 0; |
| 246 | while(copy != static_cast<Scalar>(0)) |
| 247 | { |
| 248 | ++result; |
| 249 | copy &= (copy - 1); |
| 250 | } |
| 251 | |
| 252 | return result; |
| 253 | } |
| 254 | }; |
| 255 | |
| 256 | /** Compute the unrooted distance between two vectors. |
| 257 | * @param lhs vector on left hand side |
| 258 | * @param rhs vector on right hand side */ |
| 259 | template<typename DerivedA, typename DerivedB> |
| 260 | Scalar operator()(const Eigen::MatrixBase<DerivedA> &lhs, |
| 261 | const Eigen::MatrixBase<DerivedB> &rhs) const |
| 262 | { |
| 263 | static_assert( |
| 264 | std::is_same<typename Eigen::MatrixBase<DerivedA>::Scalar,Scalar>::value, |
| 265 | "distance scalar and input matrix A must have same type"); |
| 266 | static_assert( |
| 267 | std::is_same<typename Eigen::MatrixBase<DerivedB>::Scalar, Scalar>::value, |
| 268 | "distance scalar and input matrix B must have same type"); |
| 269 | |
| 270 | return lhs. |
| 271 | binaryExpr(rhs, XOR()). |
| 272 | unaryExpr(BitCount()). |
| 273 | sum(); |
| 274 | } |
| 275 | |
| 276 | /** Compute the unrooted distance between two scalars. |
| 277 | * @param lhs scalar on left hand side |
| 278 | * @param rhs scalar on right hand side */ |
| 279 | Scalar operator()(const Scalar lhs, |
| 280 | const Scalar rhs) const |
| 281 | { |
| 282 | BitCount cnt; |
| 283 | XOR xOr; |
| 284 | return cnt(xOr(lhs, rhs)); |
| 285 | } |
| 286 | |
| 287 | /** Compute the root of a unrooted distance value. |
| 288 | * @param value unrooted distance value */ |
| 289 | Scalar operator()(const Scalar value) const |
| 290 | { |
| 291 | return value; |
| 292 | } |
| 293 | }; |
| 294 | |
| 295 | /** Efficient heap structure to query nearest neighbours. */ |
| 296 | template<typename Scalar> |
| 297 | class QueryHeap |
| 298 | { |
| 299 | private: |
| 300 | Index *indices_ = nullptr; |
| 301 | Scalar *distances_ = nullptr; |
| 302 | size_t maxSize_ = 0; |
| 303 | size_t size_ = 0; |
| 304 | public: |
| 305 | /** Creates a query heap with the given index and distance memory regions. */ |
| 306 | QueryHeap(Index *indices, Scalar *distances, const size_t maxSize) |
| 307 | : indices_(indices), distances_(distances), maxSize_(maxSize) |
| 308 | { } |
| 309 | |
| 310 | /** Pushes a new query data set into the heap with the given |
| 311 | * index and distance. |
| 312 | * The index identifies the point for which the given distance |
| 313 | * was computed. |
| 314 | * @param idx index / ID of the query point |
| 315 | * @param dist distance that was computed for the query point*/ |
| 316 | void push(const Index idx, const Scalar dist) |
| 317 | { |
| 318 | assert(!full()); |
| 319 | |
| 320 | // add new value at the end |
| 321 | indices_[size_] = idx; |
| 322 | distances_[size_] = dist; |
| 323 | ++size_; |
| 324 | |
| 325 | // upheap |
| 326 | size_t k = size_ - 1; |
| 327 | size_t tmp = (k - 1) / 2; |
| 328 | while(k > 0 && distances_[tmp] < dist) |
| 329 | { |
| 330 | distances_[k] = distances_[tmp]; |
| 331 | indices_[k] = indices_[tmp]; |
| 332 | k = tmp; |
| 333 | tmp = (k - 1) / 2; |
| 334 | } |
| 335 | distances_[k] = dist; |
| 336 | indices_[k] = idx; |
| 337 | } |
| 338 | |
| 339 | /** Removes the element at the front of the heap and restores |
| 340 | * the heap order. */ |
| 341 | void pop() |
| 342 | { |
| 343 | assert(!empty()); |
| 344 | |
| 345 | // replace first element with last |
| 346 | --size_; |
| 347 | distances_[0] = distances_[size_]; |
| 348 | indices_[0] = indices_[size_]; |
| 349 | |
| 350 | // downheap |
| 351 | size_t k = 0; |
| 352 | size_t j; |
| 353 | Scalar dist = distances_[0]; |
| 354 | Index idx = indices_[0]; |
| 355 | while(2 * k + 1 < size_) |
| 356 | { |
| 357 | j = 2 * k + 1; |
| 358 | if(j + 1 < size_ && distances_[j+1] > distances_[j]) |
| 359 | ++j; |
| 360 | // j references now greatest child |
| 361 | if(dist >= distances_[j]) |
| 362 | break; |
| 363 | distances_[k] = distances_[j]; |
| 364 | indices_[k] = indices_[j]; |
| 365 | k = j; |
| 366 | } |
| 367 | distances_[k] = dist; |
| 368 | indices_[k] = idx; |
| 369 | } |
| 370 | |
| 371 | /** Returns the distance of the element in front of the heap. */ |
| 372 | Scalar front() const |
| 373 | { |
| 374 | assert(!empty()); |
| 375 | return distances_[0]; |
| 376 | } |
| 377 | |
| 378 | /** Determines if this query heap is full. |
| 379 | * The heap is considered full if its number of elements |
| 380 | * has reached its max size. |
| 381 | * @return true if the heap is full, else false */ |
| 382 | bool full() const |
| 383 | { |
| 384 | return size_ >= maxSize_; |
| 385 | } |
| 386 | |
| 387 | /** Determines if this query heap is empty. |
| 388 | * @return true if the heap contains no elements, else false */ |
| 389 | bool empty() const |
| 390 | { |
| 391 | return size_ == 0; |
| 392 | } |
| 393 | |
| 394 | /** Returns the number of elements within the query heap. |
| 395 | * @return number of elements in the heap */ |
| 396 | size_t size() const |
| 397 | { |
| 398 | return size_; |
| 399 | } |
| 400 | |
| 401 | /** Clears the query heap. */ |
| 402 | void clear() |
| 403 | { |
| 404 | size_ = 0; |
| 405 | } |
| 406 | |
| 407 | /** Sorts the elements within the heap according to |
| 408 | * their distance. */ |
| 409 | void sort() |
| 410 | { |
| 411 | size_t cnt = size_; |
| 412 | for(size_t i = 0; i < cnt; ++i) |
| 413 | { |
| 414 | Index idx = indices_[0]; |
| 415 | Scalar dist = distances_[0]; |
| 416 | pop(); |
| 417 | indices_[cnt - i - 1] = idx; |
| 418 | distances_[cnt - i - 1] = dist; |
| 419 | } |
| 420 | } |
| 421 | }; |
| 422 | |
| 423 | /** Class for performing brute force knn search. */ |
| 424 | template<typename Scalar, |
| 425 | typename Distance=EuclideanDistance<Scalar>> |
| 426 | class BruteForce |
| 427 | { |
| 428 | public: |
| 429 | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> Matrix; |
| 430 | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vector; |
| 431 | typedef knncpp::Matrixi Matrixi; |
| 432 | private: |
| 433 | Distance distance_ = Distance(); |
| 434 | Matrix dataCopy_ = Matrix(); |
| 435 | const Matrix *data_ = nullptr; |
| 436 | |
| 437 | bool sorted_ = true; |
| 438 | bool takeRoot_ = true; |
| 439 | Index threads_ = 1; |
| 440 | Scalar maxDist_ = 0; |
| 441 | |
| 442 | public: |
| 443 | |
| 444 | BruteForce() = default; |
| 445 | |
| 446 | /** Constructs a brute force instance with the given data. |
| 447 | * @param data NxM matrix, M points of dimension N |
| 448 | * @param copy if true copies the data, otherwise assumes static data */ |
| 449 | BruteForce(const Matrix &data, const bool copy = false) |
| 450 | : BruteForce() |
| 451 | { |
| 452 | setData(data, copy); |
| 453 | } |
| 454 | |
| 455 | /** Set if the points returned by the queries should be sorted |
| 456 | * according to their distance to the query points. |
| 457 | * @param sorted sort query results */ |
| 458 | void setSorted(const bool sorted) |
| 459 | { |
| 460 | sorted_ = sorted; |
| 461 | } |
| 462 | |
| 463 | /** Set if the distances after the query should be rooted or not. |
| 464 | * Taking the root of the distances increases query time, but the |
| 465 | * function will return true distances instead of their powered |
| 466 | * versions. |
| 467 | * @param takeRoot set true if root should be taken else false */ |
| 468 | void setTakeRoot(const bool takeRoot) |
| 469 | { |
| 470 | takeRoot_ = takeRoot; |
| 471 | } |
| 472 | |
| 473 | /** Set the amount of threads that should be used for querying. |
| 474 | * OpenMP has to be enabled for this to work. |
| 475 | * @param threads amount of threads, 0 for optimal choice */ |
| 476 | void setThreads(const unsigned int threads) |
| 477 | { |
| 478 | threads_ = threads; |
| 479 | } |
| 480 | |
| 481 | /** Set the maximum distance for querying the tree. |
| 482 | * The search will be pruned if the maximum distance is set to any |
| 483 | * positive number. |
| 484 | * @param maxDist maximum distance, <= 0 for no limit */ |
| 485 | void setMaxDistance(const Scalar maxDist) |
| 486 | { |
| 487 | maxDist_ = maxDist; |
| 488 | } |
| 489 | |
| 490 | /** Set the data points used for this tree. |
| 491 | * This does not build the tree. |
| 492 | * @param data NxM matrix, M points of dimension N |
| 493 | * @param copy if true data is copied, assumes static data otherwise */ |
| 494 | void setData(const Matrix &data, const bool copy = false) |
| 495 | { |
| 496 | if(copy) |
| 497 | { |
| 498 | dataCopy_ = data; |
| 499 | data_ = &dataCopy_; |
| 500 | } |
| 501 | else |
| 502 | { |
| 503 | data_ = &data; |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | void setDistance(const Distance &distance) |
| 508 | { |
| 509 | distance_ = distance; |
| 510 | } |
| 511 | |
| 512 | void build() |
| 513 | { } |
| 514 | |
| 515 | template<typename Derived> |
| 516 | void query(const Eigen::MatrixBase<Derived> &queryPoints, |
| 517 | const size_t knn, |
| 518 | Matrixi &indices, |
| 519 | Matrix &distances) const |
| 520 | { |
| 521 | if(data_ == nullptr) |
| 522 | throw std::runtime_error("cannot query BruteForce: data not set"); |
| 523 | if(data_->size() == 0) |
| 524 | throw std::runtime_error("cannot query BruteForce: data is empty"); |
| 525 | if(queryPoints.rows() != dimension()) |
| 526 | throw std::runtime_error("cannot query BruteForce: data and query descriptors do not have same dimension"); |
| 527 | |
| 528 | const Matrix &dataPoints = *data_; |
| 529 | |
| 530 | indices.setConstant(knn, queryPoints.cols(), -1); |
| 531 | distances.setConstant(knn, queryPoints.cols(), -1); |
| 532 | |
| 533 | #pragma omp parallel for num_threads(threads_) |
| 534 | for(Index i = 0; i < queryPoints.cols(); ++i) |
| 535 | { |
| 536 | Index *idxPoint = &indices.data()[i * knn]; |
| 537 | Scalar *distPoint = &distances.data()[i * knn]; |
| 538 | |
| 539 | QueryHeap<Scalar> heap(idxPoint, distPoint, knn); |
| 540 | |
| 541 | for(Index j = 0; j < dataPoints.cols(); ++j) |
| 542 | { |
| 543 | Scalar dist = distance_(queryPoints.col(i), dataPoints.col(j)); |
| 544 | |
| 545 | // check if point is in range if max distance was set |
| 546 | bool isInRange = maxDist_ <= 0 || dist <= maxDist_; |
| 547 | // check if this node was an improvement if heap is already full |
| 548 | bool isImprovement = !heap.full() || |
| 549 | dist < heap.front(); |
| 550 | if(isInRange && isImprovement) |
| 551 | { |
| 552 | if(heap.full()) |
| 553 | heap.pop(); |
| 554 | heap.push(j, dist); |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | if(sorted_) |
| 559 | heap.sort(); |
| 560 | |
| 561 | if(takeRoot_) |
| 562 | { |
| 563 | for(size_t j = 0; j < knn; ++j) |
| 564 | { |
| 565 | if(idxPoint[j] < 0) |
| 566 | break; |
| 567 | distPoint[j] = distance_(distPoint[j]); |
| 568 | } |
| 569 | } |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | /** Returns the amount of data points stored in the search index. |
| 574 | * @return number of data points */ |
| 575 | Index size() const |
| 576 | { |
| 577 | return data_ == nullptr ? 0 : data_->cols(); |
| 578 | } |
| 579 | |
| 580 | /** Returns the dimension of the data points in the search index. |
| 581 | * @return dimension of data points */ |
| 582 | Index dimension() const |
| 583 | { |
| 584 | return data_ == nullptr ? 0 : data_->rows(); |
| 585 | } |
| 586 | }; |
| 587 | |
| 588 | // template<typename Scalar> |
| 589 | // struct MeanMidpointRule |
| 590 | // { |
| 591 | // typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> Matrix; |
| 592 | // typedef knncpp::Matrixi Matrixi; |
| 593 | |
| 594 | // void operator(const Matrix &data, const Matrixi &indices, Index split) |
| 595 | // }; |
| 596 | |
| 597 | /** Class for performing k nearest neighbour searches with minkowski distances. |
| 598 | * This kdtree only works reliably with the minkowski distance and its |
| 599 | * special cases like manhatten or euclidean distance. |
| 600 | * @see ManhattenDistance, EuclideanDistance, ChebyshevDistance, MinkowskiDistance*/ |
| 601 | template<typename _Scalar, int _Dimension, typename _Distance> |
| 602 | class KDTreeMinkowski |
| 603 | { |
| 604 | public: |
| 605 | typedef _Scalar Scalar; |
| 606 | typedef _Distance Distance; |
| 607 | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> Matrix; |
| 608 | typedef Eigen::Matrix<Scalar, _Dimension, Eigen::Dynamic> DataMatrix; |
| 609 | typedef Eigen::Matrix<Scalar, _Dimension, 1> DataVector; |
| 610 | typedef knncpp::Matrixi Matrixi; |
| 611 | private: |
| 612 | typedef Eigen::Matrix<Scalar, 2, 1> Bounds; |
| 613 | typedef Eigen::Matrix<Scalar, 2, _Dimension> BoundingBox; |
| 614 | |
| 615 | /** Struct representing a node in the KDTree. |
| 616 | * It can be either a inner node or a leaf node. */ |
| 617 | struct Node |
| 618 | { |
| 619 | /** Indices of data points in this leaf node. */ |
| 620 | Index startIdx = 0; |
| 621 | Index length = 0; |
| 622 | |
| 623 | /** Left child of this inner node. */ |
| 624 | Index left = -1; |
| 625 | /** Right child of this inner node. */ |
| 626 | Index right = -1; |
| 627 | /** Axis of the axis aligned splitting hyper plane. */ |
| 628 | Index splitaxis = -1; |
| 629 | /** Translation of the axis aligned splitting hyper plane. */ |
| 630 | Scalar splitpoint = 0; |
| 631 | /** Lower end of the splitpoint range */ |
| 632 | Scalar splitlower = 0; |
| 633 | /** Upper end of the splitpoint range */ |
| 634 | Scalar splitupper = 0; |
| 635 | |
| 636 | |
| 637 | Node() = default; |
| 638 | |
| 639 | /** Constructor for leaf nodes */ |
| 640 | Node(const Index startIdx, const Index length) |
| 641 | : startIdx(startIdx), length(length) |
| 642 | { } |
| 643 | |
| 644 | /** Constructor for inner nodes */ |
| 645 | Node(const Index splitaxis, const Scalar splitpoint, |
| 646 | const Index left, const Index right) |
| 647 | : left(left), right(right), |
| 648 | splitaxis(splitaxis), splitpoint(splitpoint) |
| 649 | { } |
| 650 | |
| 651 | bool isLeaf() const |
| 652 | { |
| 653 | return !hasLeft() && !hasRight(); |
| 654 | } |
| 655 | |
| 656 | bool isInner() const |
| 657 | { |
| 658 | return hasLeft() && hasRight(); |
| 659 | } |
| 660 | |
| 661 | bool hasLeft() const |
| 662 | { |
| 663 | return left >= 0; |
| 664 | } |
| 665 | |
| 666 | bool hasRight() const |
| 667 | { |
| 668 | return right >= 0; |
| 669 | } |
| 670 | }; |
| 671 | |
| 672 | DataMatrix dataCopy_ = DataMatrix(); |
| 673 | const DataMatrix *data_ = nullptr; |
| 674 | std::vector<Index> indices_ = std::vector<Index>(); |
| 675 | std::vector<Node> nodes_ = std::vector<Node>(); |
| 676 | |
| 677 | Index bucketSize_ = 16; |
| 678 | bool sorted_ = true; |
| 679 | bool compact_ = false; |
| 680 | bool balanced_ = false; |
| 681 | bool takeRoot_ = true; |
| 682 | Index threads_ = 0; |
| 683 | Scalar maxDist_ = 0; |
| 684 | |
| 685 | Distance distance_ = Distance(); |
| 686 | |
| 687 | BoundingBox bbox_ = BoundingBox(); |
| 688 | |
| 689 | Index buildLeafNode(const Index startIdx, |
| 690 | const Index length, |
| 691 | BoundingBox &bbox) |
| 692 | { |
| 693 | nodes_.push_back(Node(startIdx, length)); |
| 694 | calculateBoundingBox(startIdx, length, bbox); |
| 695 | return static_cast<Index>(nodes_.size() - 1); |
| 696 | } |
| 697 | |
| 698 | /** Finds the minimum and maximum values of each dimension (row) in the |
| 699 | * data matrix. Only respects the columns specified by the index |
| 700 | * vector. |
| 701 | * @param startIdx starting index within indices data structure to search for bounding box |
| 702 | * @param length length of the block of indices*/ |
| 703 | void calculateBoundingBox(const Index startIdx, |
| 704 | const Index length, |
| 705 | BoundingBox &bbox) const |
| 706 | { |
| 707 | assert(length > 0); |
| 708 | assert(startIdx >= 0); |
| 709 | assert(static_cast<size_t>(startIdx + length) <= indices_.size()); |
| 710 | assert(data_->rows() == bbox.cols()); |
| 711 | |
| 712 | const DataMatrix &data = *data_; |
| 713 | |
| 714 | // initialize bounds of the bounding box |
| 715 | Index first = indices_[startIdx]; |
| 716 | for(Index i = 0; i < bbox.cols(); ++i) |
| 717 | { |
| 718 | bbox(0, i) = data(i, first); |
| 719 | bbox(1, i) = data(i, first); |
| 720 | } |
| 721 | |
| 722 | // search for min / max values in data |
| 723 | for(Index i = 1; i < length; ++i) |
| 724 | { |
| 725 | // retrieve data index |
| 726 | Index col = indices_[startIdx + i]; |
| 727 | assert(col >= 0 && col < data.cols()); |
| 728 | |
| 729 | // check min and max for each dimension individually |
| 730 | for(Index j = 0; j < data.rows(); ++j) |
| 731 | { |
| 732 | bbox(0, j) = std::min(bbox(0, j), data(j, col)); |
| 733 | bbox(1, j) = std::max(bbox(1, j), data(j, col)); |
| 734 | } |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | /** Calculates the bounds (min / max values) for the given dimension and block of data. */ |
| 739 | void calculateBounds(const Index startIdx, |
| 740 | const Index length, |
| 741 | const Index dim, |
| 742 | Bounds &bounds) const |
| 743 | { |
| 744 | assert(length > 0); |
| 745 | assert(startIdx >= 0); |
| 746 | assert(static_cast<size_t>(startIdx + length) <= indices_.size()); |
| 747 | |
| 748 | const DataMatrix &data = *data_; |
| 749 | |
| 750 | bounds(0) = data(dim, indices_[startIdx]); |
| 751 | bounds(1) = data(dim, indices_[startIdx]); |
| 752 | |
| 753 | for(Index i = 1; i < length; ++i) |
| 754 | { |
| 755 | Index col = indices_[startIdx + i]; |
| 756 | assert(col >= 0 && col < data.cols()); |
| 757 | |
| 758 | bounds(0) = std::min(bounds(0), data(dim, col)); |
| 759 | bounds(1) = std::max(bounds(1), data(dim, col)); |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | void calculateSplittingMidpoint(const Index startIdx, |
| 764 | const Index length, |
| 765 | const BoundingBox &bbox, |
| 766 | Index &splitaxis, |
| 767 | Scalar &splitpoint, |
| 768 | Index &splitoffset) |
| 769 | { |
| 770 | const DataMatrix &data = *data_; |
| 771 | |
| 772 | // search for axis with longest distance |
| 773 | splitaxis = 0; |
| 774 | Scalar splitsize = static_cast<Scalar>(0); |
| 775 | for(Index i = 0; i < data.rows(); ++i) |
| 776 | { |
| 777 | Scalar diff = bbox(1, i) - bbox(0, i); |
| 778 | if(diff > splitsize) |
| 779 | { |
| 780 | splitaxis = i; |
| 781 | splitsize = diff; |
| 782 | } |
| 783 | } |
| 784 | |
| 785 | // calculate the bounds in this axis and update our data |
| 786 | // accordingly |
| 787 | Bounds bounds; |
| 788 | calculateBounds(startIdx, length, splitaxis, bounds); |
| 789 | splitsize = bounds(1) - bounds(0); |
| 790 | |
| 791 | const Index origSplitaxis = splitaxis; |
| 792 | for(Index i = 0; i < data.rows(); ++i) |
| 793 | { |
| 794 | // skip the dimension of the previously found splitaxis |
| 795 | if(i == origSplitaxis) |
| 796 | continue; |
| 797 | Scalar diff = bbox(1, i) - bbox(0, i); |
| 798 | // check if the split for this dimension would be potentially larger |
| 799 | if(diff > splitsize) |
| 800 | { |
| 801 | Bounds newBounds; |
| 802 | // update the bounds to their actual current value |
| 803 | calculateBounds(startIdx, length, splitaxis, newBounds); |
| 804 | diff = newBounds(1) - newBounds(0); |
| 805 | if(diff > splitsize) |
| 806 | { |
| 807 | splitaxis = i; |
| 808 | splitsize = diff; |
| 809 | bounds = newBounds; |
| 810 | } |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | // use the sliding midpoint rule |
| 815 | splitpoint = (bounds(0) + bounds(1)) / static_cast<Scalar>(2); |
| 816 | |
| 817 | Index leftIdx = startIdx; |
| 818 | Index rightIdx = startIdx + length - 1; |
| 819 | |
| 820 | // first loop checks left < splitpoint and right >= splitpoint |
| 821 | while(leftIdx <= rightIdx) |
| 822 | { |
| 823 | // increment left as long as left has not reached right and |
| 824 | // the value of the left element is less than the splitpoint |
| 825 | while(leftIdx <= rightIdx && data(splitaxis, indices_[leftIdx]) < splitpoint) |
| 826 | ++leftIdx; |
| 827 | |
| 828 | // decrement right as long as left has not reached right and |
| 829 | // the value of the right element is greater than the splitpoint |
| 830 | while(leftIdx <= rightIdx && data(splitaxis, indices_[rightIdx]) >= splitpoint) |
| 831 | --rightIdx; |
| 832 | |
| 833 | if(leftIdx <= rightIdx) |
| 834 | { |
| 835 | std::swap(indices_[leftIdx], indices_[rightIdx]); |
| 836 | ++leftIdx; |
| 837 | --rightIdx; |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | // remember this offset from starting index |
| 842 | const Index offset1 = leftIdx - startIdx; |
| 843 | |
| 844 | rightIdx = startIdx + length - 1; |
| 845 | // second loop checks left <= splitpoint and right > splitpoint |
| 846 | while(leftIdx <= rightIdx) |
| 847 | { |
| 848 | // increment left as long as left has not reached right and |
| 849 | // the value of the left element is less than the splitpoint |
| 850 | while(leftIdx <= rightIdx && data(splitaxis, indices_[leftIdx]) <= splitpoint) |
| 851 | ++leftIdx; |
| 852 | |
| 853 | // decrement right as long as left has not reached right and |
| 854 | // the value of the right element is greater than the splitpoint |
| 855 | while(leftIdx <= rightIdx && data(splitaxis, indices_[rightIdx]) > splitpoint) |
| 856 | --rightIdx; |
| 857 | |
| 858 | if(leftIdx <= rightIdx) |
| 859 | { |
| 860 | std::swap(indices_[leftIdx], indices_[rightIdx]); |
| 861 | ++leftIdx; |
| 862 | --rightIdx; |
| 863 | } |
| 864 | } |
| 865 | |
| 866 | // remember this offset from starting index |
| 867 | const Index offset2 = leftIdx - startIdx; |
| 868 | |
| 869 | const Index halfLength = length / static_cast<Index>(2); |
| 870 | |
| 871 | // find a separation of points such that is best balanced |
| 872 | // offset1 denotes separation where equal points are all on the right |
| 873 | // offset2 denots separation where equal points are all on the left |
| 874 | if (offset1 > halfLength) |
| 875 | splitoffset = offset1; |
| 876 | else if (offset2 < halfLength) |
| 877 | splitoffset = offset2; |
| 878 | // when we get here offset1 < halflength and offset2 > halflength |
| 879 | // so simply split the equal elements in the middle |
| 880 | else |
| 881 | splitoffset = halfLength; |
| 882 | } |
| 883 | |
| 884 | Index buildInnerNode(const Index startIdx, |
| 885 | const Index length, |
| 886 | BoundingBox &bbox) |
| 887 | { |
| 888 | assert(length > 0); |
| 889 | assert(startIdx >= 0); |
| 890 | assert(static_cast<size_t>(startIdx + length) <= indices_.size()); |
| 891 | assert(data_->rows() == bbox.cols()); |
| 892 | |
| 893 | // create node |
| 894 | const Index nodeIdx = nodes_.size(); |
| 895 | nodes_.push_back(Node()); |
| 896 | |
| 897 | Index splitaxis; |
| 898 | Index splitoffset; |
| 899 | Scalar splitpoint; |
| 900 | calculateSplittingMidpoint(startIdx, length, bbox, splitaxis, splitpoint, splitoffset); |
| 901 | |
| 902 | nodes_[nodeIdx].splitaxis = splitaxis; |
| 903 | nodes_[nodeIdx].splitpoint = splitpoint; |
| 904 | |
| 905 | const Index leftStart = startIdx; |
| 906 | const Index leftLength = splitoffset; |
| 907 | const Index rightStart = startIdx + splitoffset; |
| 908 | const Index rightLength = length - splitoffset; |
| 909 | |
| 910 | BoundingBox bboxLeft = bbox; |
| 911 | BoundingBox bboxRight = bbox; |
| 912 | |
| 913 | // do left build |
| 914 | bboxLeft(1, splitaxis) = splitpoint; |
| 915 | Index left = buildR(leftStart, leftLength, bboxLeft); |
| 916 | nodes_[nodeIdx].left = left; |
| 917 | |
| 918 | // do right build |
| 919 | bboxRight(0, splitaxis) = splitpoint; |
| 920 | Index right = buildR(rightStart, rightLength, bboxRight); |
| 921 | nodes_[nodeIdx].right = right; |
| 922 | |
| 923 | // extract the range of the splitpoint |
| 924 | nodes_[nodeIdx].splitlower = bboxLeft(1, splitaxis); |
| 925 | nodes_[nodeIdx].splitupper = bboxRight(0, splitaxis); |
| 926 | |
| 927 | // update the bounding box to the values of the new bounding boxes |
| 928 | for(Index i = 0; i < bbox.cols(); ++i) |
| 929 | { |
| 930 | bbox(0, i) = std::min(bboxLeft(0, i), bboxRight(0, i)); |
| 931 | bbox(1, i) = std::max(bboxLeft(1, i), bboxRight(1, i)); |
| 932 | } |
| 933 | |
| 934 | return nodeIdx; |
| 935 | } |
| 936 | |
| 937 | Index buildR(const Index startIdx, |
| 938 | const Index length, |
| 939 | BoundingBox &bbox) |
| 940 | { |
| 941 | // check for base case |
| 942 | if(length <= bucketSize_) |
| 943 | return buildLeafNode(startIdx, length, bbox); |
| 944 | else |
| 945 | return buildInnerNode(startIdx, length, bbox); |
| 946 | } |
| 947 | |
| 948 | bool isDistanceInRange(const Scalar dist) const |
| 949 | { |
| 950 | return maxDist_ <= 0 || dist <= maxDist_; |
| 951 | } |
| 952 | |
| 953 | bool isDistanceImprovement(const Scalar dist, const QueryHeap<Scalar> &dataHeap) const |
| 954 | { |
| 955 | return !dataHeap.full() || dist < dataHeap.front(); |
| 956 | } |
| 957 | |
| 958 | template<typename Derived> |
| 959 | void queryLeafNode(const Node &node, |
| 960 | const Eigen::MatrixBase<Derived> &queryPoint, |
| 961 | QueryHeap<Scalar> &dataHeap) const |
| 962 | { |
| 963 | assert(node.isLeaf()); |
| 964 | |
| 965 | const DataMatrix &data = *data_; |
| 966 | |
| 967 | // go through all points in this leaf node and do brute force search |
| 968 | for(Index i = 0; i < node.length; ++i) |
| 969 | { |
| 970 | const Index idx = node.startIdx + i; |
| 971 | assert(idx >= 0 && idx < static_cast<Index>(indices_.size())); |
| 972 | |
| 973 | // retrieve index of the current data point |
| 974 | const Index dataIdx = indices_[idx]; |
| 975 | const Scalar dist = distance_(queryPoint, data.col(dataIdx)); |
| 976 | |
| 977 | // check if point is within max distance and if the value would be |
| 978 | // an improvement |
| 979 | if(isDistanceInRange(dist) && isDistanceImprovement(dist, dataHeap)) |
| 980 | { |
| 981 | if(dataHeap.full()) |
| 982 | dataHeap.pop(); |
| 983 | dataHeap.push(dataIdx, dist); |
| 984 | } |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | template<typename Derived> |
| 989 | void queryInnerNode(const Node &node, |
| 990 | const Eigen::MatrixBase<Derived> &queryPoint, |
| 991 | QueryHeap<Scalar> &dataHeap, |
| 992 | DataVector &splitdists, |
| 993 | const Scalar mindist) const |
| 994 | { |
| 995 | assert(node.isInner()); |
| 996 | |
| 997 | const Index splitaxis = node.splitaxis; |
| 998 | const Scalar splitval = queryPoint(splitaxis, 0); |
| 999 | Scalar splitdist; |
| 1000 | Index firstNode; |
| 1001 | Index secondNode; |
| 1002 | // check if right or left child should be visited |
| 1003 | const bool visitLeft = (splitval - node.splitlower + splitval - node.splitupper) < 0; |
| 1004 | if(visitLeft) |
| 1005 | { |
| 1006 | firstNode = node.left; |
| 1007 | secondNode = node.right; |
| 1008 | splitdist = distance_(splitval, node.splitupper); |
| 1009 | } |
| 1010 | else |
| 1011 | { |
| 1012 | firstNode = node.right; |
| 1013 | secondNode = node.left; |
| 1014 | splitdist = distance_(splitval, node.splitlower); |
| 1015 | } |
| 1016 | |
| 1017 | queryR(nodes_[firstNode], queryPoint, dataHeap, splitdists, mindist); |
| 1018 | |
| 1019 | const Scalar mindistNew = mindist + splitdist - splitdists(splitaxis); |
| 1020 | |
| 1021 | // check if node is in range if max distance was set |
| 1022 | // check if this node was an improvement if heap is already full |
| 1023 | if(isDistanceInRange(mindistNew) && isDistanceImprovement(mindistNew, dataHeap)) |
| 1024 | { |
| 1025 | const Scalar splitdistOld = splitdists(splitaxis); |
| 1026 | splitdists(splitaxis) = splitdist; |
| 1027 | queryR(nodes_[secondNode], queryPoint, dataHeap, splitdists, mindistNew); |
| 1028 | splitdists(splitaxis) = splitdistOld; |
| 1029 | } |
| 1030 | } |
| 1031 | |
| 1032 | template<typename Derived> |
| 1033 | void queryR(const Node &node, |
| 1034 | const Eigen::MatrixBase<Derived> &queryPoint, |
| 1035 | QueryHeap<Scalar> &dataHeap, |
| 1036 | DataVector &splitdists, |
| 1037 | const Scalar mindist) const |
| 1038 | { |
| 1039 | if(node.isLeaf()) |
| 1040 | queryLeafNode(node, queryPoint, dataHeap); |
| 1041 | else |
| 1042 | queryInnerNode(node, queryPoint, dataHeap, splitdists, mindist); |
| 1043 | } |
| 1044 | |
| 1045 | /** Recursively computes the depth for the given node. */ |
| 1046 | Index depthR(const Node &node) const |
| 1047 | { |
| 1048 | if(node.isLeaf()) |
| 1049 | return 1; |
| 1050 | else |
| 1051 | { |
| 1052 | Index left = depthR(nodes_[node.left]); |
| 1053 | Index right = depthR(nodes_[node.right]); |
| 1054 | return std::max(left, right) + 1; |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | public: |
| 1059 | |
| 1060 | /** Constructs an empty KDTree. */ |
| 1061 | KDTreeMinkowski() |
| 1062 | { } |
| 1063 | |
| 1064 | /** Constructs KDTree with the given data. This does not build the |
| 1065 | * the index of the tree. |
| 1066 | * @param data NxM matrix, M points of dimension N |
| 1067 | * @param copy if true copies the data, otherwise assumes static data */ |
| 1068 | KDTreeMinkowski(const DataMatrix &data, const bool copy=false) |
| 1069 | { |
| 1070 | setData(data, copy); |
| 1071 | } |
| 1072 | |
| 1073 | /** Set the maximum amount of data points per leaf in the tree (aka |
| 1074 | * bucket size). |
| 1075 | * @param bucketSize amount of points per leaf. */ |
| 1076 | void setBucketSize(const Index bucketSize) |
| 1077 | { |
| 1078 | bucketSize_ = bucketSize; |
| 1079 | } |
| 1080 | |
| 1081 | /** Set if the points returned by the queries should be sorted |
| 1082 | * according to their distance to the query points. |
| 1083 | * @param sorted sort query results */ |
| 1084 | void setSorted(const bool sorted) |
| 1085 | { |
| 1086 | sorted_ = sorted; |
| 1087 | } |
| 1088 | |
| 1089 | /** Set if the tree should be built as balanced as possible. |
| 1090 | * This increases build time, but decreases search time. |
| 1091 | * @param balanced set true to build a balanced tree */ |
| 1092 | void setBalanced(const bool balanced) |
| 1093 | { |
| 1094 | balanced_ = balanced; |
| 1095 | } |
| 1096 | |
| 1097 | /** Set if the distances after the query should be rooted or not. |
| 1098 | * Taking the root of the distances increases query time, but the |
| 1099 | * function will return true distances instead of their powered |
| 1100 | * versions. |
| 1101 | * @param takeRoot set true if root should be taken else false */ |
| 1102 | void setTakeRoot(const bool takeRoot) |
| 1103 | { |
| 1104 | takeRoot_ = takeRoot; |
| 1105 | } |
| 1106 | |
| 1107 | /** Set if the tree should be built with compact leaf nodes. |
| 1108 | * This increases build time, but makes leaf nodes denser (more) |
| 1109 | * points. Thus less visits are necessary. |
| 1110 | * @param compact set true ti build a tree with compact leafs */ |
| 1111 | void setCompact(const bool compact) |
| 1112 | { |
| 1113 | compact_ = compact; |
| 1114 | } |
| 1115 | |
| 1116 | /** Set the amount of threads that should be used for building and |
| 1117 | * querying the tree. |
| 1118 | * OpenMP has to be enabled for this to work. |
| 1119 | * @param threads amount of threads, 0 for optimal choice */ |
| 1120 | void setThreads(const unsigned int threads) |
| 1121 | { |
| 1122 | threads_ = threads; |
| 1123 | } |
| 1124 | |
| 1125 | /** Set the maximum distance for querying the tree. |
| 1126 | * The search will be pruned if the maximum distance is set to any |
| 1127 | * positive number. |
| 1128 | * @param maxDist maximum distance, <= 0 for no limit */ |
| 1129 | void setMaxDistance(const Scalar maxDist) |
| 1130 | { |
| 1131 | maxDist_ = maxDist; |
| 1132 | } |
| 1133 | |
| 1134 | /** Set the data points used for this tree. |
| 1135 | * This does not build the tree. |
| 1136 | * @param data NxM matrix, M points of dimension N |
| 1137 | * @param copy if true data is copied, assumes static data otherwise */ |
| 1138 | void setData(const DataMatrix &data, const bool copy = false) |
| 1139 | { |
| 1140 | clear(); |
| 1141 | if(copy) |
| 1142 | { |
| 1143 | dataCopy_ = data; |
| 1144 | data_ = &dataCopy_; |
| 1145 | } |
| 1146 | else |
| 1147 | { |
| 1148 | data_ = &data; |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | void setDistance(const Distance &distance) |
| 1153 | { |
| 1154 | distance_ = distance; |
| 1155 | } |
| 1156 | |
| 1157 | /** Builds the search index of the tree. |
| 1158 | * Data has to be set and must be non-empty. */ |
| 1159 | void build() |
| 1160 | { |
| 1161 | if(data_ == nullptr) |
| 1162 | throw std::runtime_error("cannot build KDTree; data not set"); |
| 1163 | |
| 1164 | if(data_->size() == 0) |
| 1165 | throw std::runtime_error("cannot build KDTree; data is empty"); |
| 1166 | |
| 1167 | clear(); |
| 1168 | nodes_.reserve((data_->cols() / bucketSize_) + 1); |
| 1169 | |
| 1170 | // initialize indices in simple sequence |
| 1171 | indices_.resize(data_->cols()); |
| 1172 | for(size_t i = 0; i < indices_.size(); ++i) |
| 1173 | indices_[i] = i; |
| 1174 | |
| 1175 | bbox_.resize(2, data_->rows()); |
| 1176 | Index startIdx = 0; |
| 1177 | Index length = data_->cols(); |
| 1178 | |
| 1179 | calculateBoundingBox(startIdx, length, bbox_); |
| 1180 | |
| 1181 | buildR(startIdx, length, bbox_); |
| 1182 | } |
| 1183 | |
| 1184 | /** Queries the tree for the nearest neighbours of the given query |
| 1185 | * points. |
| 1186 | * |
| 1187 | * The tree has to be built before it can be queried. |
| 1188 | * |
| 1189 | * The query points have to have the same dimension as the data points |
| 1190 | * of the tree. |
| 1191 | * |
| 1192 | * The result matrices will be resized appropriatley. |
| 1193 | * Indices and distances will be set to -1 if less than knn neighbours |
| 1194 | * were found. |
| 1195 | * |
| 1196 | * @param queryPoints NxM matrix, M points of dimension N |
| 1197 | * @param knn amount of neighbours to be found |
| 1198 | * @param indices KNNxM matrix, indices of neighbours in the data set |
| 1199 | * @param distances KNNxM matrix, distance between query points and |
| 1200 | * neighbours */ |
| 1201 | template<typename Derived> |
| 1202 | void query(const Eigen::MatrixBase<Derived> &queryPoints, |
| 1203 | const size_t knn, |
| 1204 | Matrixi &indices, |
| 1205 | Matrix &distances) const |
| 1206 | { |
| 1207 | if(nodes_.size() == 0) |
| 1208 | throw std::runtime_error("cannot query KDTree; not built yet"); |
| 1209 | |
| 1210 | if(queryPoints.rows() != dimension()) |
| 1211 | throw std::runtime_error("cannot query KDTree; data and query points do not have same dimension"); |
| 1212 | |
| 1213 | distances.setConstant(knn, queryPoints.cols(), -1); |
| 1214 | indices.setConstant(knn, queryPoints.cols(), -1); |
| 1215 | |
| 1216 | Index *indicesRaw = indices.data(); |
| 1217 | Scalar *distsRaw = distances.data(); |
| 1218 | |
| 1219 | #pragma omp parallel for num_threads(threads_) |
| 1220 | for(Index i = 0; i < queryPoints.cols(); ++i) |
| 1221 | { |
| 1222 | |
| 1223 | Scalar *distPoint = &distsRaw[i * knn]; |
| 1224 | Index *idxPoint = &indicesRaw[i * knn]; |
| 1225 | |
| 1226 | // create heap to find nearest neighbours |
| 1227 | QueryHeap<Scalar> dataHeap(idxPoint, distPoint, knn); |
| 1228 | |
| 1229 | Scalar mindist = static_cast<Scalar>(0); |
| 1230 | DataVector splitdists(queryPoints.rows()); |
| 1231 | |
| 1232 | for(Index j = 0; j < splitdists.rows(); ++j) |
| 1233 | { |
| 1234 | const Scalar value = queryPoints(j, i); |
| 1235 | const Scalar lower = bbox_(0, j); |
| 1236 | const Scalar upper = bbox_(1, j); |
| 1237 | if(value < lower) |
| 1238 | { |
| 1239 | splitdists(j) = distance_(value, lower); |
| 1240 | } |
| 1241 | else if(value > upper) |
| 1242 | { |
| 1243 | splitdists(j) = distance_(value, upper); |
| 1244 | } |
| 1245 | else |
| 1246 | { |
| 1247 | splitdists(j) = static_cast<Scalar>(0); |
| 1248 | } |
| 1249 | |
| 1250 | mindist += splitdists(j); |
| 1251 | } |
| 1252 | |
| 1253 | queryR(nodes_[0], queryPoints.col(i), dataHeap, splitdists, mindist); |
| 1254 | |
| 1255 | if(sorted_) |
| 1256 | dataHeap.sort(); |
| 1257 | |
| 1258 | if(takeRoot_) |
| 1259 | { |
| 1260 | for(size_t j = 0; j < knn; ++j) |
| 1261 | { |
| 1262 | if(distPoint[j] < 0) |
| 1263 | break; |
| 1264 | distPoint[j] = distance_(distPoint[j]); |
| 1265 | } |
| 1266 | } |
| 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | /** Clears the tree. */ |
| 1271 | void clear() |
| 1272 | { |
| 1273 | nodes_.clear(); |
| 1274 | } |
| 1275 | |
| 1276 | /** Returns the amount of data points stored in the search index. |
| 1277 | * @return number of data points */ |
| 1278 | Index size() const |
| 1279 | { |
| 1280 | return data_ == nullptr ? 0 : data_->cols(); |
| 1281 | } |
| 1282 | |
| 1283 | /** Returns the dimension of the data points in the search index. |
| 1284 | * @return dimension of data points */ |
| 1285 | Index dimension() const |
| 1286 | { |
| 1287 | return data_ == nullptr ? 0 : data_->rows(); |
| 1288 | } |
| 1289 | |
| 1290 | /** Returns the maxximum depth of the tree. |
| 1291 | * @return maximum depth of the tree */ |
| 1292 | Index depth() const |
| 1293 | { |
| 1294 | return nodes_.size() == 0 ? 0 : depthR(nodes_.front()); |
| 1295 | } |
| 1296 | }; |
| 1297 | |
| 1298 | template<typename _Scalar, typename _Distance = EuclideanDistance<_Scalar>> using KDTreeMinkowski2 = KDTreeMinkowski<_Scalar, 2, _Distance>; |
| 1299 | template<typename _Scalar, typename _Distance = EuclideanDistance<_Scalar>> using KDTreeMinkowski3 = KDTreeMinkowski<_Scalar, 3, _Distance>; |
| 1300 | template<typename _Scalar, typename _Distance = EuclideanDistance<_Scalar>> using KDTreeMinkowski4 = KDTreeMinkowski<_Scalar, 4, _Distance>; |
| 1301 | template<typename _Scalar, typename _Distance = EuclideanDistance<_Scalar>> using KDTreeMinkowski5 = KDTreeMinkowski<_Scalar, 5, _Distance>; |
| 1302 | template<typename _Scalar, typename _Distance = EuclideanDistance<_Scalar>> using KDTreeMinkowskiX = KDTreeMinkowski<_Scalar, Eigen::Dynamic, _Distance>; |
| 1303 | |
| 1304 | /** Class for performing KNN search in hamming space by multi-index hashing. */ |
| 1305 | template<typename Scalar> |
| 1306 | class MultiIndexHashing |
| 1307 | { |
| 1308 | public: |
| 1309 | static_assert(std::is_integral<Scalar>::value, "MultiIndexHashing Scalar has to be integral"); |
| 1310 | |
| 1311 | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> Matrix; |
| 1312 | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vector; |
| 1313 | typedef knncpp::Matrixi Matrixi; |
| 1314 | |
| 1315 | private: |
| 1316 | HammingDistance<Scalar> distance_; |
| 1317 | |
| 1318 | Matrix dataCopy_; |
| 1319 | const Matrix *data_; |
| 1320 | |
| 1321 | bool sorted_; |
| 1322 | Scalar maxDist_; |
| 1323 | Index substrLen_; |
| 1324 | Index threads_; |
| 1325 | std::vector<std::map<Scalar, std::vector<Index>>> buckets_; |
| 1326 | |
| 1327 | template<typename Derived> |
| 1328 | Scalar extractCode(const Eigen::MatrixBase<Derived> &data, |
| 1329 | const Index idx, |
| 1330 | const Index offset) const |
| 1331 | { |
| 1332 | Index leftShift = std::max<Index>(0, static_cast<Index>(sizeof(Scalar)) - offset - substrLen_); |
| 1333 | Index rightShift = leftShift + offset; |
| 1334 | |
| 1335 | Scalar code = (data(idx, 0) << (leftShift * 8)) >> (rightShift * 8); |
| 1336 | |
| 1337 | if(static_cast<Index>(sizeof(Scalar)) - offset < substrLen_ && idx + 1 < data.rows()) |
| 1338 | { |
| 1339 | Index shift = 2 * static_cast<Index>(sizeof(Scalar)) - substrLen_ - offset; |
| 1340 | code |= data(idx+1, 0) << (shift * 8); |
| 1341 | } |
| 1342 | |
| 1343 | return code; |
| 1344 | } |
| 1345 | public: |
| 1346 | MultiIndexHashing() |
| 1347 | : distance_(), dataCopy_(), data_(nullptr), sorted_(true), |
| 1348 | maxDist_(0), substrLen_(1), threads_(1) |
| 1349 | { } |
| 1350 | |
| 1351 | /** Constructs an index with the given data. |
| 1352 | * This does not build the the index. |
| 1353 | * @param data NxM matrix, M points of dimension N |
| 1354 | * @param copy if true copies the data, otherwise assumes static data */ |
| 1355 | MultiIndexHashing(const Matrix &data, const bool copy=false) |
| 1356 | : MultiIndexHashing() |
| 1357 | { |
| 1358 | setData(data, copy); |
| 1359 | } |
| 1360 | |
| 1361 | /** Set the maximum distance for querying the index. |
| 1362 | * Note that if no maximum distance is used, this algorithm performs |
| 1363 | * basically a brute force search. |
| 1364 | * @param maxDist maximum distance, <= 0 for no limit */ |
| 1365 | void setMaxDistance(const Scalar maxDist) |
| 1366 | { |
| 1367 | maxDist_ = maxDist; |
| 1368 | } |
| 1369 | |
| 1370 | /** Set if the points returned by the queries should be sorted |
| 1371 | * according to their distance to the query points. |
| 1372 | * @param sorted sort query results */ |
| 1373 | void setSorted(const bool sorted) |
| 1374 | { |
| 1375 | sorted_ = sorted; |
| 1376 | } |
| 1377 | |
| 1378 | /** Set the amount of threads that should be used for building and |
| 1379 | * querying the tree. |
| 1380 | * OpenMP has to be enabled for this to work. |
| 1381 | * @param threads amount of threads, 0 for optimal choice */ |
| 1382 | void setThreads(const unsigned int threads) |
| 1383 | { |
| 1384 | threads_ = threads; |
| 1385 | } |
| 1386 | |
| 1387 | /** Set the length of substrings (in bytes) used for multi index hashing. |
| 1388 | * @param len lentth of bucket substrings in bytes*/ |
| 1389 | void setSubstringLength(const Index len) |
| 1390 | { |
| 1391 | substrLen_ = len; |
| 1392 | } |
| 1393 | |
| 1394 | /** Set the data points used for the KNN search. |
| 1395 | * @param data NxM matrix, M points of dimension N |
| 1396 | * @param copy if true data is copied, assumes static data otherwise */ |
| 1397 | void setData(const Matrix &data, const bool copy = false) |
| 1398 | { |
| 1399 | clear(); |
| 1400 | if(copy) |
| 1401 | { |
| 1402 | dataCopy_ = data; |
| 1403 | data_ = &dataCopy_; |
| 1404 | } |
| 1405 | else |
| 1406 | { |
| 1407 | data_ = &data; |
| 1408 | } |
| 1409 | } |
| 1410 | |
| 1411 | void build() |
| 1412 | { |
| 1413 | if(data_ == nullptr) |
| 1414 | throw std::runtime_error("cannot build MultiIndexHashing; data not set"); |
| 1415 | if(data_->size() == 0) |
| 1416 | throw std::runtime_error("cannot build MultiIndexHashing; data is empty"); |
| 1417 | |
| 1418 | const Matrix &data = *data_; |
| 1419 | const Index bytesPerVec = data.rows() * static_cast<Index>(sizeof(Scalar)); |
| 1420 | if(bytesPerVec % substrLen_ != 0) |
| 1421 | throw std::runtime_error("cannot build MultiIndexHashing; cannot divide byte count per vector by substring length without remainings"); |
| 1422 | |
| 1423 | buckets_.clear(); |
| 1424 | buckets_.resize(bytesPerVec / substrLen_); |
| 1425 | |
| 1426 | for(size_t i = 0; i < buckets_.size(); ++i) |
| 1427 | { |
| 1428 | Index start = static_cast<Index>(i) * substrLen_; |
| 1429 | Index idx = start / static_cast<Index>(sizeof(Scalar)); |
| 1430 | Index offset = start % static_cast<Index>(sizeof(Scalar)); |
| 1431 | std::map<Scalar, std::vector<Index>> &map = buckets_[i]; |
| 1432 | |
| 1433 | for(Index c = 0; c < data.cols(); ++c) |
| 1434 | { |
| 1435 | Scalar code = extractCode(data.col(c), idx, offset); |
| 1436 | if(map.find(code) == map.end()) |
| 1437 | map[code] = std::vector<Index>(); |
| 1438 | map[code].push_back(c); |
| 1439 | } |
| 1440 | } |
| 1441 | } |
| 1442 | |
| 1443 | template<typename Derived> |
| 1444 | void query(const Eigen::MatrixBase<Derived> &queryPoints, |
| 1445 | const size_t knn, |
| 1446 | Matrixi &indices, |
| 1447 | Matrix &distances) const |
| 1448 | { |
| 1449 | if(buckets_.size() == 0) |
| 1450 | throw std::runtime_error("cannot query MultiIndexHashing; not built yet"); |
| 1451 | if(queryPoints.rows() != dimension()) |
| 1452 | throw std::runtime_error("cannot query MultiIndexHashing; data and query points do not have same dimension"); |
| 1453 | |
| 1454 | const Matrix &data = *data_; |
| 1455 | |
| 1456 | indices.setConstant(knn, queryPoints.cols(), -1); |
| 1457 | distances.setConstant(knn, queryPoints.cols(), -1); |
| 1458 | |
| 1459 | Index *indicesRaw = indices.data(); |
| 1460 | Scalar *distsRaw = distances.data(); |
| 1461 | |
| 1462 | Scalar maxDistPart = maxDist_ / buckets_.size(); |
| 1463 | |
| 1464 | #pragma omp parallel for num_threads(threads_) |
| 1465 | for(Index c = 0; c < queryPoints.cols(); ++c) |
| 1466 | { |
| 1467 | std::set<Index> candidates; |
| 1468 | for(size_t i = 0; i < buckets_.size(); ++i) |
| 1469 | { |
| 1470 | Index start = static_cast<Index>(i) * substrLen_; |
| 1471 | Index idx = start / static_cast<Index>(sizeof(Scalar)); |
| 1472 | Index offset = start % static_cast<Index>(sizeof(Scalar)); |
| 1473 | const std::map<Scalar, std::vector<Index>> &map = buckets_[i]; |
| 1474 | |
| 1475 | Scalar code = extractCode(queryPoints.col(c), idx, offset); |
| 1476 | for(const auto &x: map) |
| 1477 | { |
| 1478 | Scalar dist = distance_(x.first, code); |
| 1479 | if(maxDistPart <= 0 || dist <= maxDistPart) |
| 1480 | { |
| 1481 | for(size_t j = 0; j < x.second.size(); ++j) |
| 1482 | candidates.insert(x.second[j]); |
| 1483 | } |
| 1484 | } |
| 1485 | } |
| 1486 | |
| 1487 | Scalar *distPoint = &distsRaw[c * knn]; |
| 1488 | Index *idxPoint = &indicesRaw[c * knn]; |
| 1489 | // create heap to find nearest neighbours |
| 1490 | QueryHeap<Scalar> dataHeap(idxPoint, distPoint, knn); |
| 1491 | |
| 1492 | for(Index idx: candidates) |
| 1493 | { |
| 1494 | Scalar dist = distance_(data.col(idx), queryPoints.col(c)); |
| 1495 | |
| 1496 | bool isInRange = maxDist_ <= 0 || dist <= maxDist_; |
| 1497 | bool isImprovement = !dataHeap.full() || |
| 1498 | dist < dataHeap.front(); |
| 1499 | if(isInRange && isImprovement) |
| 1500 | { |
| 1501 | if(dataHeap.full()) |
| 1502 | dataHeap.pop(); |
| 1503 | dataHeap.push(idx, dist); |
| 1504 | } |
| 1505 | } |
| 1506 | |
| 1507 | if(sorted_) |
| 1508 | dataHeap.sort(); |
| 1509 | } |
| 1510 | } |
| 1511 | |
| 1512 | /** Returns the amount of data points stored in the search index. |
| 1513 | * @return number of data points */ |
| 1514 | Index size() const |
| 1515 | { |
| 1516 | return data_ == nullptr ? 0 : data_->cols(); |
| 1517 | } |
| 1518 | |
| 1519 | /** Returns the dimension of the data points in the search index. |
| 1520 | * @return dimension of data points */ |
| 1521 | Index dimension() const |
| 1522 | { |
| 1523 | return data_ == nullptr ? 0 : data_->rows(); |
| 1524 | } |
| 1525 | |
| 1526 | void clear() |
| 1527 | { |
| 1528 | data_ = nullptr; |
| 1529 | dataCopy_.resize(0, 0); |
| 1530 | buckets_.clear(); |
| 1531 | } |
| 1532 | |
| 1533 | }; |
| 1534 | |
| 1535 | #ifdef KNNCPP_FLANN |
| 1536 | |
| 1537 | /** Wrapper class of FLANN kdtrees for the use with Eigen3. */ |
| 1538 | template<typename Scalar, |
| 1539 | typename Distance=flann::L2_Simple<Scalar>> |
| 1540 | class KDTreeFlann |
| 1541 | { |
| 1542 | public: |
| 1543 | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> Matrix; |
| 1544 | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vector; |
| 1545 | typedef Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic> Matrixi; |
| 1546 | |
| 1547 | private: |
| 1548 | typedef flann::Index<Distance> FlannIndex; |
| 1549 | |
| 1550 | Matrix dataCopy_; |
| 1551 | Matrix *dataPoints_; |
| 1552 | |
| 1553 | FlannIndex *index_; |
| 1554 | flann::SearchParams searchParams_; |
| 1555 | flann::IndexParams indexParams_; |
| 1556 | Scalar maxDist_; |
| 1557 | |
| 1558 | public: |
| 1559 | KDTreeFlann() |
| 1560 | : dataCopy_(), dataPoints_(nullptr), index_(nullptr), |
| 1561 | searchParams_(32, 0, false), |
| 1562 | indexParams_(flann::KDTreeSingleIndexParams(15)), |
| 1563 | maxDist_(0) |
| 1564 | { |
| 1565 | } |
| 1566 | |
| 1567 | KDTreeFlann(Matrix &data, const bool copy = false) |
| 1568 | : KDTreeFlann() |
| 1569 | { |
| 1570 | setData(data, copy); |
| 1571 | } |
| 1572 | |
| 1573 | ~KDTreeFlann() |
| 1574 | { |
| 1575 | clear(); |
| 1576 | } |
| 1577 | |
| 1578 | void setIndexParams(const flann::IndexParams ¶ms) |
| 1579 | { |
| 1580 | indexParams_ = params; |
| 1581 | } |
| 1582 | |
| 1583 | void setChecks(const int checks) |
| 1584 | { |
| 1585 | searchParams_.checks = checks; |
| 1586 | } |
| 1587 | |
| 1588 | void setSorted(const bool sorted) |
| 1589 | { |
| 1590 | searchParams_.sorted = sorted; |
| 1591 | } |
| 1592 | |
| 1593 | void setThreads(const int threads) |
| 1594 | { |
| 1595 | searchParams_.cores = threads; |
| 1596 | } |
| 1597 | |
| 1598 | void setEpsilon(const float eps) |
| 1599 | { |
| 1600 | searchParams_.eps = eps; |
| 1601 | } |
| 1602 | |
| 1603 | void setMaxDistance(const Scalar dist) |
| 1604 | { |
| 1605 | maxDist_ = dist; |
| 1606 | } |
| 1607 | |
| 1608 | void setData(Matrix &data, const bool copy = false) |
| 1609 | { |
| 1610 | if(copy) |
| 1611 | { |
| 1612 | dataCopy_ = data; |
| 1613 | dataPoints_ = &dataCopy_; |
| 1614 | } |
| 1615 | else |
| 1616 | { |
| 1617 | dataPoints_ = &data; |
| 1618 | } |
| 1619 | |
| 1620 | clear(); |
| 1621 | } |
| 1622 | |
| 1623 | void build() |
| 1624 | { |
| 1625 | if(dataPoints_ == nullptr) |
| 1626 | throw std::runtime_error("cannot build KDTree; data not set"); |
| 1627 | if(dataPoints_->size() == 0) |
| 1628 | throw std::runtime_error("cannot build KDTree; data is empty"); |
| 1629 | |
| 1630 | if(index_ != nullptr) |
| 1631 | delete index_; |
| 1632 | |
| 1633 | flann::Matrix<Scalar> dataPts( |
| 1634 | dataPoints_->data(), |
| 1635 | dataPoints_->cols(), |
| 1636 | dataPoints_->rows()); |
| 1637 | |
| 1638 | index_ = new FlannIndex(dataPts, indexParams_); |
| 1639 | index_->buildIndex(); |
| 1640 | } |
| 1641 | |
| 1642 | void query(Matrix &queryPoints, |
| 1643 | const size_t knn, |
| 1644 | Matrixi &indices, |
| 1645 | Matrix &distances) const |
| 1646 | { |
| 1647 | if(index_ == nullptr) |
| 1648 | throw std::runtime_error("cannot query KDTree; not built yet"); |
| 1649 | if(dataPoints_->rows() != queryPoints.rows()) |
| 1650 | throw std::runtime_error("cannot query KDTree; KDTree has different dimension than query data"); |
| 1651 | |
| 1652 | // resize result matrices |
| 1653 | distances.resize(knn, queryPoints.cols()); |
| 1654 | indices.resize(knn, queryPoints.cols()); |
| 1655 | |
| 1656 | // wrap matrices into flann matrices |
| 1657 | flann::Matrix<Scalar> queryPts( |
| 1658 | queryPoints.data(), |
| 1659 | queryPoints.cols(), |
| 1660 | queryPoints.rows()); |
| 1661 | flann::Matrix<int> indicesF( |
| 1662 | indices.data(), |
| 1663 | indices.cols(), |
| 1664 | indices.rows()); |
| 1665 | flann::Matrix<Scalar> distancesF( |
| 1666 | distances.data(), |
| 1667 | distances.cols(), |
| 1668 | distances.rows()); |
| 1669 | |
| 1670 | // if maximum distance was set then use radius search |
| 1671 | if(maxDist_ > 0) |
| 1672 | index_->radiusSearch(queryPts, indicesF, distancesF, maxDist_, searchParams_); |
| 1673 | else |
| 1674 | index_->knnSearch(queryPts, indicesF, distancesF, knn, searchParams_); |
| 1675 | |
| 1676 | // make result matrices compatible to API |
| 1677 | #pragma omp parallel for num_threads(searchParams_.cores) |
| 1678 | for(Index i = 0; i < indices.cols(); ++i) |
| 1679 | { |
| 1680 | bool found = false; |
| 1681 | for(Index j = 0; j < indices.rows(); ++j) |
| 1682 | { |
| 1683 | if(indices(j, i) == -1) |
| 1684 | found = true; |
| 1685 | |
| 1686 | if(found) |
| 1687 | { |
| 1688 | indices(j, i) = -1; |
| 1689 | distances(j, i) = -1; |
| 1690 | } |
| 1691 | } |
| 1692 | } |
| 1693 | } |
| 1694 | |
| 1695 | Index size() const |
| 1696 | { |
| 1697 | return dataPoints_ == nullptr ? 0 : dataPoints_->cols(); |
| 1698 | } |
| 1699 | |
| 1700 | Index dimension() const |
| 1701 | { |
| 1702 | return dataPoints_ == nullptr ? 0 : dataPoints_->rows(); |
| 1703 | } |
| 1704 | |
| 1705 | void clear() |
| 1706 | { |
| 1707 | if(index_ != nullptr) |
| 1708 | { |
| 1709 | delete index_; |
| 1710 | index_ = nullptr; |
| 1711 | } |
| 1712 | } |
| 1713 | |
| 1714 | FlannIndex &flannIndex() |
| 1715 | { |
| 1716 | return index_; |
| 1717 | } |
| 1718 | }; |
| 1719 | |
| 1720 | typedef KDTreeFlann<double> KDTreeFlannd; |
| 1721 | typedef KDTreeFlann<float> KDTreeFlannf; |
| 1722 | |
| 1723 | #endif |
| 1724 | } |
| 1725 | |
| 1726 | #endif |