Commit | Line | Data |
---|---|---|
81923e5c BA |
1 | \documentclass[xcolor=dvipsnames, smaller]{beamer}\r |
2 | \r | |
3 | \usepackage[utf8]{inputenc}\r | |
4 | \usepackage{amsmath, amsfonts}\r | |
5 | \usepackage[francais]{babel}\r | |
6 | \usepackage{hyperref, url, booktabs, subcaption, tikz}\r | |
7 | %\usepackage{graphicx}\r | |
8 | \hypersetup{colorlinks,linkcolor=black,urlcolor=violet}\r | |
9 | \r | |
10 | \mode<presentation>{\r | |
11 | \setbeamertemplate{sections/subsections in toc}[square]\r | |
12 | \beamertemplatenavigationsymbolsempty\r | |
13 | }\r | |
14 | \r | |
15 | \newcommand{\N}{\mathbb{N}} % naturals\r | |
16 | \newcommand{\set}[1]{\lbrace#1\rbrace} % set\r | |
17 | \newcommand{\R}{\mathbb{R}} % real\r | |
18 | \r | |
19 | \colorlet{darkred}{red!80!black}\r | |
20 | \colorlet{darkblue}{blue!80!black}\r | |
21 | \colorlet{darkgreen}{green!60!black}\r | |
22 | \r | |
23 | \usetikzlibrary{calc,decorations.pathmorphing,patterns}\r | |
24 | \pgfdeclaredecoration{penciline}{initial}{\r | |
25 | \state{initial}[width=+\pgfdecoratedinputsegmentremainingdistance,\r | |
26 | auto corner on length=1mm,]{\r | |
27 | \pgfpathcurveto%\r | |
28 | {% From\r | |
29 | \pgfqpoint{\pgfdecoratedinputsegmentremainingdistance}\r | |
30 | {\pgfdecorationsegmentamplitude}\r | |
31 | }\r | |
32 | {% Control 1\r | |
33 | \pgfmathrand\r | |
34 | \pgfpointadd{\pgfqpoint{\pgfdecoratedinputsegmentremainingdistance}{0pt}}\r | |
35 | {\pgfqpoint{-\pgfdecorationsegmentaspect\r | |
36 | \pgfdecoratedinputsegmentremainingdistance}%\r | |
37 | {\pgfmathresult\pgfdecorationsegmentamplitude}\r | |
38 | }\r | |
39 | }\r | |
40 | {%TO \r | |
41 | \pgfpointadd{\pgfpointdecoratedinputsegmentlast}{\pgfpoint{1pt}{1pt}}\r | |
42 | }\r | |
43 | }\r | |
44 | \state{final}{}\r | |
45 | }\r | |
46 | %\r | |
47 | \tikzstyle{block} = [draw,rectangle,thick,minimum height=2em,minimum width=2em]\r | |
48 | \r | |
49 | \r | |
50 | \r | |
51 | % = = = = = = = = = = = = = = = = = = = = = = = = Separator = = = =\r | |
52 | \r | |
53 | \AtBeginSection[]{\r | |
54 | \begin{frame}{Sommaire}\r | |
55 | \tableofcontents[currentsection] \r | |
56 | \end{frame}\r | |
57 | }\r | |
58 | \r | |
59 | %--------------------------------------------------------------------------\r | |
60 | \r | |
61 | \r | |
62 | \title{Non supervised classification of individual electricity curves} \r | |
63 | \author{Jairo Cugliari}\r | |
64 | \institute{%Laboratoire ERIC, Université Lyon 2\r | |
65 | % \begin{center}\r | |
66 | % \includegraphics[height = 1.5cm]{pics/logo_dis.png} \r | |
67 | % ~~~~% separator\r | |
68 | \includegraphics[height = 1cm]{pics/logo_eric.png} \r | |
69 | % ~~~~% separator\r | |
70 | % \includegraphics[height = 1cm]{pics/logo_lyon2.jpg} \r | |
71 | %\end{center}\r | |
72 | }\r | |
73 | \r | |
74 | \r | |
75 | \begin{document}\r | |
76 | \r | |
77 | %--------------------------------------------------------------------------\r | |
78 | \r | |
79 | % \begin{frame}[plain]\r | |
80 | \r | |
81 | \begin{frame}[plain, noframenumbering, b]\r | |
82 | \r | |
83 | % \begin{center}\r | |
84 | % % \includegraphics[height = 1.5cm]{pics/logo_dis.png} \r | |
85 | % % ~~~~% separator\r | |
86 | % \includegraphics[height = 1.5cm]{pics/logo_eric.png} \r | |
87 | % ~~~~% separator\r | |
88 | % \includegraphics[height = 1.5cm]{pics/logo_lyon2.jpg} \r | |
89 | % \end{center}\r | |
90 | \r | |
91 | \maketitle\r | |
92 | \r | |
93 | \begin{center}{\scriptsize \r | |
94 | Joint work with Benjamin Auder (LMO, Université Paris-Sud) }\r | |
95 | \end{center}\r | |
96 | \r | |
97 | % \begin{flushright}\r | |
98 | % \includegraphics[width = 0.15\textwidth]{pics/by-nc-sa.png} \r | |
99 | % \end{flushright}\r | |
100 | \r | |
101 | \end{frame}\r | |
102 | \r | |
103 | \r | |
104 | % \maketitle\r | |
105 | % \begin{center}{\scriptsize \r | |
106 | % Joint work with Benjamin Auder (LMO, Université Paris-Sud) }\r | |
107 | % \end{center}\r | |
108 | % \end{frame}\r | |
109 | \r | |
110 | %--------------------------------------------------------------------------\r | |
111 | \r | |
112 | \frame{\frametitle{Outline}\r | |
113 | \tableofcontents\r | |
114 | }\r | |
115 | \r | |
116 | %--------------------------------------------------------------------------\r | |
117 | \r | |
118 | \section{Motivation}\r | |
119 | \r | |
120 | \r | |
121 | \begin{frame}{Industrial motivation}\r | |
122 | \r | |
123 | \begin{columns}\r | |
124 | \column{0.6\textwidth}\r | |
125 | \begin{itemize}\r | |
126 | \item Smartgrid \& Smart meters : time real information\r | |
127 | \item Lot of data of different nature\r | |
128 | \item Many problems : transfer protocol, security, privacy, ...\r | |
129 | \item The French touch: 35M Linky smartmeter\r | |
130 | \end{itemize}\r | |
131 | \r | |
132 | \vskip 1cm\r | |
133 | \r | |
134 | What can we do with all these data ?\r | |
135 | \r | |
136 | \column{0.4\textwidth} \r | |
137 | \includegraphics[width = \textwidth]{./pics/smartgrid.jpg} \r | |
138 | \r | |
139 | \includegraphics[width = \textwidth]{./pics/linky.jpg} \r | |
140 | \end{columns}\r | |
141 | \end{frame}\r | |
142 | \r | |
143 | %--------------------------------------------------------------------------\r | |
144 | \r | |
145 | \begin{frame}{Electricity demand data}\r | |
146 | \framesubtitle{Some salient features}\r | |
147 | \r | |
148 | \begin{figure}[!ht] \centering\r | |
149 | \begin{subfigure}[t]{0.45\textwidth}\r | |
150 | \includegraphics[width=\textwidth]{pics/longtermload.png}\r | |
151 | \caption{Long term trand} %\label{fig:gull}\r | |
152 | \end{subfigure}%\r | |
153 | ~ %spacing between images\r | |
154 | \begin{subfigure}[t]{0.45\textwidth}\r | |
155 | \includegraphics[width=\textwidth]{pics/twoyearsload.png}\r | |
156 | \caption{Weekly cycle} % \label{fig:tiger}\r | |
157 | \end{subfigure}\r | |
158 | \r | |
159 | \begin{subfigure}[t]{0.45\textwidth}\r | |
160 | \includegraphics[width=\textwidth]{pics/dailyloads.png}\r | |
161 | \caption{Daily load curve} % \label{fig:mouse}\r | |
162 | \end{subfigure}\r | |
163 | ~ %spacing between images\r | |
164 | \begin{subfigure}[t]{0.45\textwidth}\r | |
165 | \includegraphics[width=\textwidth]{pics/consotemp.png}\r | |
166 | \caption{Electricity load vs. temperature}\r | |
167 | \end{subfigure}\r | |
168 | \end{figure}\r | |
169 | \end{frame}\r | |
170 | \r | |
171 | %--------------------------------------------------------------------------\r | |
172 | \r | |
173 | \begin{frame}[shrink]{FD as slices of a continuous process \r | |
174 | \begin{scriptsize} \hfill [Bosq, (1990)] \end{scriptsize}} \r | |
175 | % \r | |
176 | The prediction problem\r | |
177 | \r | |
178 | \begin{itemize}\r | |
179 | \item Suppose one observes a square integrable continuous-time stochastic process $X=(X(t), t\in\R)$ over the interval $[0,T]$, $T>0$;\r | |
180 | \item {We want to predict $X$ all over the segment $[T, T+\delta], \delta>0$}\r | |
181 | \item {Divide the interval into $n$ subintervals of equal\r | |
182 | size $\delta$.}\r | |
183 | \item Consider the functional-valued discrete time stochastic process $ Z = (Z_k, k\in\N) $, where $ \mathbb{N} = \set{ 1,2,\ldots } $, defined by \r | |
184 | \end{itemize}\r | |
185 | \r | |
186 | \begin{columns}\r | |
187 | \column{5cm} \r | |
188 | \input{tikz/axis2}\r | |
189 | \column{5cm} \r | |
190 | \[ Z_k(t) = X(t + (k-1)\delta) \]\r | |
191 | \[ k\in\N \;\;\; \forall t \in [0,\delta) \]\r | |
192 | \end{columns}\r | |
193 | \r | |
194 | \vfill\r | |
195 | If $X$ contents a $\delta-$seasonal component, \r | |
196 | $Z$ is particularly fruitful.\r | |
197 | \r | |
198 | \end{frame}\r | |
199 | \r | |
200 | %--------------------------------------------------------------------------\r | |
201 | \r | |
202 | \begin{frame}{Long term objective}\r | |
203 | \r | |
204 | \begin{columns}\r | |
205 | \column{.6\textwidth}\r | |
206 | %\begin{figure}[!ht]\centering\r | |
207 | \includegraphics[width = \textwidth]{pics/schema.png} \r | |
208 | %\caption{Hierarchical structure of $N$ individual clients among $K$ groups.}\label{fig:schema-hier}\r | |
209 | %\end{figure}\r | |
210 | \r | |
211 | \column{.4\textwidth}\r | |
212 | \begin{tikzpicture}[decoration=penciline, decorate]\r | |
213 | \node[block, decorate] at (0, 0){$Z_t$} ;\r | |
214 | \node[block, decorate] at (3, 0) {$Z_{t + 1}$} ;\r | |
215 | \r | |
216 | \node[block, decorate] at (0, -2.5) {$\begin{pmatrix}\r | |
217 | Z_{t, 1} \\ Z_{t, 2} \\ \vdots \\ Z_{t, K}\r | |
218 | \end{pmatrix}$ };\r | |
219 | \r | |
220 | \node[block, decorate] at (3, -2.5) {$\begin{pmatrix}\r | |
221 | Z_{t+1, 1} \\ Z_{t+1, 2} \\ \vdots \\ Z_{t+1, k}\r | |
222 | \end{pmatrix} $};\r | |
223 | \r | |
224 | \draw[decorate, darkblue, line width = 2mm, ->] (1, 0) -- (2, 0);\r | |
225 | \draw[decorate, darkgreen, line width = 2mm, ->] (1, -2.5) -- (2, -2.5);\r | |
226 | \draw[decorate, black, line width = 2mm, ->] (3, -1.3) -- (3, -0.4);\r | |
227 | \draw[decorate, darkred, line width = 2mm, ->] (1, -1.5) -- (2, -0.75);\r | |
228 | \end{tikzpicture}\r | |
229 | \end{columns}\r | |
230 | \r | |
231 | \begin{itemize}\r | |
232 | \item Groups can express tariffs, geographical dispersion, client class ...\r | |
233 | \item \textbf{IDEA}: Use a clustering algorithm to learn groups of customer structure\r | |
234 | \item \textbf{Aim}: Set up a classical clustering algorithm to run in parallel \r | |
235 | \end{itemize}\r | |
236 | \end{frame}\r | |
237 | \r | |
238 | %--------------------------------------------------------------------------\r | |
239 | \r | |
240 | \section{Functional clustering}\r | |
241 | \r | |
242 | \begin{frame}{Aim}\r | |
243 | \r | |
244 | \begin{columns}\r | |
245 | \column{0.6\textwidth}\r | |
246 | \begin{block}{ }\r | |
247 | \begin{itemize}\r | |
248 | \item Segmentation of $X$ may not suffices to render reasonable \r | |
249 | the stationary hypothesis.\r | |
250 | \item If a grouping effect exists, we may considered stationary within each group. \r | |
251 | \item Conditionally on the grouping, functional time series prediction methods \r | |
252 | can be applied.\r | |
253 | \item We propose a clustering procedure that discover the groups from a bunch\r | |
254 | of curves.\r | |
255 | \end{itemize}\r | |
256 | \r | |
257 | We use wavelet transforms to take into account the fact \r | |
258 | that curves may present non stationary patters.\r | |
259 | \end{block}\r | |
260 | \r | |
261 | \column{0.4\textwidth}\r | |
262 | \includegraphics[width=0.9\textwidth,\r | |
263 | height=2.7cm]{pics/conso-traj.png}\r | |
264 | \r | |
265 | Two strategies to cluster functional time series:\r | |
266 | \begin{enumerate}\r | |
267 | \item Feature extraction (summary measures of the curves).\r | |
268 | \item Direct similarity between curves.\r | |
269 | \end{enumerate} \r | |
270 | \r | |
271 | \end{columns}\r | |
272 | \end{frame}\r | |
273 | \r | |
274 | %---------------------------\r | |
275 | \r | |
276 | \begin{frame}[plain]{Wavelets to cope with \textsc{fd}}\r | |
277 | \r | |
278 | \begin{columns}\r | |
279 | \column{.6\textwidth}\r | |
280 | %\begin{figure}\r | |
281 | \centering\r | |
282 | \includegraphics[width = \textwidth]{./pics/weekly-5.png}\r | |
283 | % * * * * * * * * * * * * * * * * * * *\r | |
284 | \column{.4\textwidth}\r | |
285 | \begin{block}{ } %Wavelet transform}\r | |
286 | \begin{footnotesize}\r | |
287 | \begin{itemize}\r | |
288 | \item domain-transform technique for hierarchical decomposing finite energy signals\r | |
289 | \item description in terms of a broad trend (\textcolor{PineGreen}{approximation part}), plus a set of localized changes kept in the \textcolor{red}{details parts}.\r | |
290 | \end{itemize}\r | |
291 | \end{footnotesize}\r | |
292 | \end{block}\r | |
293 | \end{columns}\r | |
294 | \r | |
295 | \begin{block}{Discrete Wavelet Transform }\r | |
296 | \r | |
297 | If $z \in L_2([0, 1])$ we can write it as\r | |
298 | \r | |
299 | \begin{equation*}\label{eq:zeta}\r | |
300 | z(t) = \sum_{k=0}^{2^{j_0}-1} \textcolor{PineGreen}{c_{j_0, k}} \phi_{j_0,k} (t) + \r | |
301 | \sum_{j={j_0}}^{\infty} \r | |
302 | \sum_{k=0}^{2^j-1} \textcolor{red}{d_{j,k}} \psi_{j,k} (t) ,\r | |
303 | \end{equation*}\r | |
304 | \r | |
305 | %\r | |
306 | where $ c_{j,k} = <g, \phi_{j,k} > $, $ d_{j,k} = <g, \varphi_{j,k}>$ are the \r | |
307 | \textcolor{PineGreen}{scale coefficients} and \textcolor{red}{wavelet coefficients} respectively, and the functions $\phi$ et $\varphi$ are associated to a orthogonal \textsc{mra} of $L_2([0, 1])$.\r | |
308 | \end{block}\r | |
309 | \end{frame}\r | |
310 | \r | |
311 | %---------------------------------------- SLIDE ---------------------\r | |
312 | \r | |
313 | \begin{frame}{Energy decomposition of the DWT}\r | |
314 | \r | |
315 | \begin{block}{ }\r | |
316 | \begin{itemize}\r | |
317 | \item Energy conservation of the signal\r | |
318 | %\r | |
319 | \begin{equation*}\label{eq:energy} \r | |
320 | \| z \|_H^2 \approx \| \widetilde{z_J} \|_2^2 \r | |
321 | = c_{0,0}^2 + \sum_{j=0}^{J-1} \sum_{k=0}^{2^j-1} d_{j,k} ^2 = \r | |
322 | c_{0,0}^2 + \sum_{j=0}^{J-1} \| \mathbf{d}_{j} \|_2^2.\r | |
323 | \end{equation*}\r | |
324 | % \item characterization by the set of channel variances estimated at the output of the corresponding filter bank\r | |
325 | \item For each $j=0,1,\ldots,J-1$, we compute the absolute and \r | |
326 | relative contribution representations by\r | |
327 | % \r | |
328 | \[ \underbrace{\hbox{cont}_j = ||\mathbf{d_j}||^2}_{\fbox{AC}} \r | |
329 | \qquad \text{and} \qquad\r | |
330 | \underbrace{\hbox{rel}_j = \r | |
331 | \frac{||\mathbf{d_j}||^2}\r | |
332 | {\sum_j ||\mathbf{d_j}||^2 }}_{\fbox{RC}} .\]\r | |
333 | \item They quantify the relative importance of the scales to the global dynamic.\r | |
334 | % \item Only the wavelet coefficients $\set{d_{j,k}}$ are used.\r | |
335 | \item RC normalizes the energy of each signal to 1.\r | |
336 | \end{itemize}\r | |
337 | \end{block}\r | |
338 | \end{frame}\r | |
339 | % =======================================\r | |
340 | \r | |
341 | \begin{frame} \r | |
342 | \frametitle{Schema of procedure}\r | |
343 | \begin{center}\r | |
344 | \includegraphics[width = 7cm, height = 2cm]{./pics/Diagramme1.png}\r | |
345 | % Diagramme1.png: 751x260 pixel, 72dpi, 26.49x9.17 cm, bb=0 0 751 260\r | |
346 | \end{center}\r | |
347 | \r | |
348 | \begin{footnotesize}\r | |
349 | \begin{description}\r | |
350 | \item [0. Data preprocessing.] Approximate sample paths of $z_1(t),\ldots,z_n(t)$ %by the truncated wavelet series at the scale $J$ from sampled data $\mathbf{z}_1, \ldots, \mathbf{z}_n$.\r | |
351 | \item [1. Feature extraction.] Compute either of the energetic components using absolute contribution (AC) or relative contribution (RC).\r | |
352 | \item [2. Feature selection.] Screen irrelevant variables. \begin{tiny} [Steinley \& Brusco ('06)]\end{tiny}\r | |
353 | \item [3. Determine the number of clusters.] Detecting significant jumps in the transformed distortion curve.\r | |
354 | \begin{tiny} [Sugar \& James ('03)]\end{tiny}\r | |
355 | \item [4. Clustering.] Obtain the $K$ clusters using PAM algorithm.\r | |
356 | \end{description} \end{footnotesize}\r | |
357 | \r | |
358 | \footnotetext[1]{Antoniadis, X. Brossat, J. Cugliari et J.-M. Poggi (2013), Clustering Functional Data Using Wavelets, {\it IJWMIP}, 11(1), 35--64}\r | |
359 | \r | |
360 | \end{frame}\r | |
361 | \r | |
362 | % ===========================================\r | |
363 | \r | |
364 | \section{Parallel $k$-medoids}\r | |
365 | \r | |
366 | \begin{frame}{Partitioning Around Medoids (PAM)\r | |
367 | \begin{scriptsize} \hfill [Kaufman et Rousseeuw~(1987)] \end{scriptsize}}\r | |
368 | \r | |
369 | \begin{itemize}\r | |
370 | \item Partition the $n$ points $R^d$-scatter into $K$ clusters\r | |
371 | \item Optimization problem :\r | |
372 | \[ D(x) = \min_{m_1,\dots,m_k \in \mathbb{R}^d} \sum_{i=1}^{n} \min_{j=1,\dots,k} \| x_i - m_j \| \, ,\]\r | |
373 | with $x = (x_1,\dots,x_n)$, $\|\,.\,\|$ can be any norm. Here we choose to use the euclidean norm. \r | |
374 | \item Robust version of $k$-means\r | |
375 | \item Computational burden : medians instead of means\r | |
376 | \item Several heuristics allow to reduce the computation time.\r | |
377 | \end{itemize}\r | |
378 | \end{frame}\r | |
379 | \r | |
380 | % ===========================================\r | |
381 | \r | |
382 | \begin{frame}{Parallelization with MPI}\r | |
383 | \r | |
384 | \begin{columns}\r | |
385 | \column{.8\textwidth}\r | |
386 | \begin{itemize}\r | |
387 | \item Easy to use library routines allowing to write algorithms in parallel\r | |
388 | \item Available on several languages \r | |
389 | \item We use the master-slave mode\r | |
390 | \end{itemize}\r | |
391 | \r | |
392 | \column{.2\textwidth}\r | |
393 | \includegraphics[width=\textwidth]{./pics/open-mpi-logo.png} \r | |
394 | \end{columns}\r | |
395 | \r | |
396 | \vfill\r | |
397 | \r | |
398 | \begin{block}{The outline of code:}\r | |
399 | \begin{enumerate}\r | |
400 | \item The master process splits the problem in tasks over the data set and sends it to the workers;\r | |
401 | \item Each worker reduces the functional nature of the data using the DWT, applies the clustering and returns the centers;\r | |
402 | \item The master recuperates and clusters the centers into $K$ meta centers. \r | |
403 | \end{enumerate}\r | |
404 | \end{block}\r | |
405 | \r | |
406 | The source code is open and will be available to download from \r | |
407 | \href{https://github.com/}{github}.\r | |
408 | \r | |
409 | \footnotetext[1]{B. Auder \& J. Cugliari. Parallélisation de l'algorithme des $k$-médoïdes. Application au clustering de courbes. (2014, submitted)}\r | |
410 | \end{frame}\r | |
411 | \r | |
412 | \section{Numerical experiences}\r | |
413 | \r | |
414 | % ===========================================\r | |
415 | \r | |
416 | \begin{frame}{Application I: Starlight curves}\r | |
417 | \r | |
418 | \begin{itemize}\r | |
419 | \item Data from UCR Time Series Classification/Clustering\r | |
420 | \item 1000 curves learning set + 8236 validation set ($d= 1024$)% discretization points\r | |
421 | \end{itemize}\r | |
422 | \r | |
423 | \begin{figure}[H]\r | |
424 | \begin{minipage}[c]{.32\linewidth}\r | |
425 | \includegraphics[width=\linewidth,height=3.5cm]{pics/slgr1.png}\r | |
426 | %\vspace*{-0.3cm}\r | |
427 | \caption{Groupe 1}\r | |
428 | \end{minipage}\r | |
429 | \begin{minipage}[c]{.32\linewidth}\r | |
430 | \includegraphics[width=\linewidth,height=3.5cm]{pics/slgr2.png}\r | |
431 | %\vspace*{-0.3cm}\r | |
432 | \caption{Groupe 2}\r | |
433 | \end{minipage}\r | |
434 | \begin{minipage}[c]{.32\linewidth}\r | |
435 | \includegraphics[width=\linewidth,height=3.5cm]{pics/slgr3.png}\r | |
436 | %\vspace*{-0.3cm}\r | |
437 | \caption{Groupe 3}\r | |
438 | \end{minipage}\r | |
439 | \label{figsltr3clusts}\r | |
440 | \end{figure}\r | |
441 | \r | |
442 | \begin{table}[H]\r | |
443 | \centering\r | |
444 | \begin{tabular}{lccc} \toprule\r | |
445 | & & \multicolumn{2}{c}{Adequacy} \\\r | |
446 | & Distortion & Internal & External \\ \midrule\r | |
447 | Training (sequential) & 1.31e4 & 0.79 & 0.77 \\\r | |
448 | Training (parallel) & 1.40e4 & 0.79 & 0.68 \\\r | |
449 | Test (sequential) & 1.09e5 & 0.78 & 0.76 \\\r | |
450 | Test (parallel) & 1.15e5 & 0.78 & 0.69 \\ \bottomrule\r | |
451 | \end{tabular}\r | |
452 | %\caption{Distorsions et indices d'adéquation des partitions}\r | |
453 | \label{tabDistorSl}\r | |
454 | \end{table}\r | |
455 | \end{frame}\r | |
456 | \r | |
457 | % ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\r | |
458 | \r | |
459 | \begin{frame}{Application II: EDF data}\r | |
460 | \begin{figure}\r | |
461 | \centering\r | |
462 | \includegraphics[width= 0.9\textwidth]{pics/conso-shapes.png}\r | |
463 | % conso-traj.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=18 18 577 824\r | |
464 | \caption{ \begin{footnotesize}\r | |
465 | French electricity power demand on autumn (top left), winter (bottom left), spring (top right) and summer (bottom right). \end{footnotesize} }\r | |
466 | \label{fig:conso-shapes}\r | |
467 | \end{figure}\r | |
468 | \r | |
469 | \begin{footnotesize}\r | |
470 | Feature extraction:\r | |
471 | \begin{itemize}\r | |
472 | \item The significant scales for revealing the cluster structure are independent of the possible number of clusters.\r | |
473 | \item Significant scales are associated to mid-frequencies. \r | |
474 | \item The retained scales parametrize the represented cycles of 1.5, 3 and 6 hours (AC). \r | |
475 | \end{itemize} \end{footnotesize}\r | |
476 | \end{frame}\r | |
477 | \r | |
478 | \r | |
479 | % ===========================================\r | |
480 | \r | |
481 | \begin{frame}\r | |
482 | \begin{figure}\r | |
483 | \centering\r | |
484 | \includegraphics[width= 0.9\textwidth]{./pics/conso_jump_AC.png} \\\r | |
485 | \caption{ \begin{footnotesize}\r | |
486 | Number of clusters by feature extraction of the AC (top). From left to right: distortion curve, transformed distortion curve and first difference on the transformed distortion curve. \end{footnotesize} }\r | |
487 | \label{fig:conso-jumps}\r | |
488 | \end{figure}\r | |
489 | \end{frame}\r | |
490 | \r | |
491 | % ===========================================\r | |
492 | \r | |
493 | \begin{frame}\r | |
494 | \begin{figure} \centering\r | |
495 | \begin{subfigure}[t]{0.45\textwidth}\r | |
496 | \includegraphics[width=\textwidth]{./pics/conso_AC-curves.png}\r | |
497 | \caption{Cluster}\r | |
498 | \end{subfigure}\r | |
499 | ~ \r | |
500 | \begin{subfigure}[t]{0.45\textwidth}\r | |
501 | \includegraphics[width=\textwidth]{./pics/conso_AC-calendar.png}\r | |
502 | \caption{Calendar}\r | |
503 | \end{subfigure}\r | |
504 | % \subfloat[Calendar]{\label{fig:conso_clust_AC_cal}\r | |
505 | % \includegraphics[width = 0.45\textwidth]{./pics/conso_AC-calendar.png}} \r | |
506 | \caption{Curves membership of the clustering using AC based dissimilarity (a) and the corresponding calendar positioning (b).}\r | |
507 | \end{figure}\r | |
508 | \end{frame}\r | |
509 | \r | |
510 | \r | |
511 | % ===========================================\r | |
512 | \r | |
513 | \r | |
514 | \begin{frame}{Application III: Electricity Smart Meter CBT (ISSDA)} \small\r | |
515 | \r | |
516 | \footnotetext[1]{\textit{Irish Social Science Data Archive}, \url{http://www.ucd.ie/issda/data/}}\r | |
517 | \r | |
518 | \begin{itemize}\r | |
519 | \item 4621 Irish households smart meter data % eséries de consommation électrique de foyers irlandais\r | |
520 | \item About 25K discretization points \r | |
521 | \item We test with $K=$ 3 or 5 classes\r | |
522 | \item We compare sequential and parallel versions \r | |
523 | \end{itemize}\r | |
524 | \r | |
525 | \r | |
526 | \begin{table}[H]\r | |
527 | \centering\r | |
528 | \begin{tabular}{lcc} \toprule\r | |
529 | % & & \\\r | |
530 | & Distortion & Internal adequacy \\ \midrule\r | |
531 | 3 clusters sequential & 1.90e7 & 0.90 \\\r | |
532 | 3 clusters parallel & 2.15e7 & 0.90 \\\r | |
533 | 5 clusters sequential & 1.61e7 & 0.89 \\\r | |
534 | 5 clusters parallel & 1.84e7 & 0.89 \\ \bottomrule\r | |
535 | \end{tabular}\r | |
536 | % \caption{Distorsions et indices d'adéquation des partitions}\r | |
537 | \label{tabDistorIr}\r | |
538 | \end{table}\r | |
539 | \r | |
540 | \end{frame}\r | |
541 | \r | |
542 | %--------------------------------------------------------------------------\r | |
543 | \r | |
544 | \section{Conclusion}\r | |
545 | \r | |
546 | \begin{frame}{Conclusion}\r | |
547 | \r | |
548 | \begin{itemize}\r | |
549 | \item Identification of customers groups from smartmeter data\r | |
550 | \item Wavelets allow to capture the functional nature of the data\r | |
551 | \item Clustering algorithm upscale envisaged for millions of curves\r | |
552 | \item \textit{Divide-and-Conquer} approach thanks to MPI library %pour l'algorithme des $k$-médoïdes : d'abord sur des groupes de données courbes, puis des groupes de médoïdes jusqu'à obtenir un seul ensemble traité sur un processseur.\r | |
553 | %\item %Les résultats obtenus sur les deux jeux de données présentés sont assez encourageants, et permettent d'envisager une utilisation à plus grande échelle.\r | |
554 | \end{itemize}\r | |
555 | \r | |
556 | \begin{block}{Further work}\r | |
557 | \begin{itemize}\r | |
558 | \item Go back to the prediction task\r | |
559 | \item Apply the algorithm over many hundreds of processors \r | |
560 | \item Connect the clustering method with a prediction model\r | |
561 | \end{itemize}\r | |
562 | \end{block}\r | |
563 | \end{frame}\r | |
564 | \r | |
565 | %--------------------------------------------------------------------------\r | |
566 | \r | |
567 | \begin{frame}[plain]{Bibliographie}\small\r | |
568 | \r | |
569 | \begin{thebibliography}{10}\r | |
570 | \bibitem{1} A. Antoniadis, X. Brossat, J. Cugliari et J.-M. Poggi (2013), Clustering Functional Data Using Wavelets, {\it IJWMIP}, 11(1), 35--64\r | |
571 | \r | |
572 | \bibitem{2} R. Bekkerman, M. Bilenko et J. Langford - éditeurs (2011), Scaling up Machine Learning: Parallel and Distributed Approaches, {\it Cambridge University Press}\r | |
573 | \r | |
574 | \bibitem{3} P. Berkhin (2006), A Survey of Clustering Data Mining Techniques, {\it Grouping Multidimensional Data, éditeurs : J. Kogan, C. Nicholas, M. Teboulle}.\r | |
575 | \r | |
576 | \bibitem{6} J. Dean et S. Ghemawat (2004), MapReduce: Simplified Data Processing on Large Clusters, {\it Sixth Symposium on Operating System Design and Implementation}.\r | |
577 | \r | |
578 | \bibitem{7} G. De Francisci Morales et A. Bifet (2013), G. De Francisci Morales SAMOA: A Platform for Mining Big Data Streams Keynote Talk at RAMSS ’13: 2nd International Workshop on Real-Time Analysis and Mining of Social Streams WWW, Rio De Janeiro\r | |
579 | \r | |
580 | \bibitem{10} L. Kaufman et P.J. Rousseeuw (1987), Clustering by means of Medoids, {\it Statistical Data Analysis Based on the L\_1-Norm and Related Methods, éditeur : Y. Dodge}.\r | |
581 | \end{thebibliography}\r | |
582 | \end{frame}\r | |
583 | \r | |
584 | \r | |
585 | \end{document}\r | |
586 | \r | |
587 | \r | |
588 | % \begin{frame}{Motivation académique: Big Data} \r | |
589 | % \begin{itemize}\r | |
590 | % \item Besoins spécifiques: très grands volumes de données, grande dimension\r | |
591 | % \item Réponses: algorithmes opérant sur de grands graphes (Kang et al.~2009), sur des flux de données haut débit (De Francisci Morales et Bifet~2013)\r | |
592 | % \item Bekkerman et al.~(2011): algorithmes de Machine Learning s'exécutant en parallèle \r | |
593 | % \end{itemize}\r | |
594 | % \r | |
595 | % \begin{itemize}\r | |
596 | % \item classification non supervisée (\textit{clustering}): regrouper les données en \textit{clusters} homogènes, suffisamment distincts deux à deux\r | |
597 | % \item nombreux algorithmes depuis Tyron~(1939) (voir Berkhin~2006 pour une revue) \r | |
598 | % \item cependant la notion de cluster varie en fonction des données, du contexte et de l'algorithme utilisé\r | |
599 | % \item technique très populaire qui permet \r | |
600 | % de réduire la taille des données en les résumant à quelques représentants \r | |
601 | % \end{itemize}\r | |
602 | % \end{frame}\r | |
603 | \r |