| 1 | #build similarity matrix W (NOTE : sparse matrix ==> optimizations later) |
| 2 | getSimilarityMatrix = function(NI) |
| 3 | { |
| 4 | # using a local sigma would be nice, but break W symmetry, |
| 5 | # which cannot easily be repaired then (??!) |
| 6 | # ==> we use a global sigma, with a very simple heuristic |
| 7 | |
| 8 | n = length(NI$ix) |
| 9 | distances = c() |
| 10 | for (i in 1:n) distances = c(distances,NI$ds[[i]]) |
| 11 | distances = unique(distances) |
| 12 | sigma2 = median(distances)^2 #for example... |
| 13 | |
| 14 | W = matrix(0.0,nrow=n,ncol=n) |
| 15 | for (i in 1:n) |
| 16 | W[ i, NI$ix[[i]] ] = exp( - NI$ds[[i]]^2 / sigma2 ) |
| 17 | |
| 18 | return (W) |
| 19 | } |
| 20 | |
| 21 | #epsilon constant, used as a zero threshold |
| 22 | EPS = 100 * .Machine$double.eps |
| 23 | |
| 24 | #Moore-Penrose pseudo inverse |
| 25 | mppsinv = function(M) |
| 26 | { |
| 27 | s = svd(M) |
| 28 | sdiag = s$d ; sdiag[sdiag < EPS] = Inf |
| 29 | p = min(nrow(M),ncol(M)) |
| 30 | sdiag = diag(1.0 / sdiag, p) |
| 31 | return ((s$v) %*% sdiag %*% t(s$u)) |
| 32 | } |
| 33 | |
| 34 | #get distance matrix from data and similarity : Commute Time |
| 35 | getECTDistances = function(NI) |
| 36 | { |
| 37 | n = length(NI$ix) ; seqVect = 1:n |
| 38 | if (n <= 1) return (0.0) #nothing to do... |
| 39 | |
| 40 | #get laplacian (...inverse) : |
| 41 | W = getSimilarityMatrix(NI) |
| 42 | invLap = mppsinv(diag(rowSums(W)) - W) |
| 43 | |
| 44 | #...and distances |
| 45 | ectd = matrix(0.0, nrow=n, ncol=n) |
| 46 | for (ij in 1:n) |
| 47 | { |
| 48 | ectd[ij,] = ectd[ij,] + invLap[ij,ij] |
| 49 | ectd[,ij] = ectd[,ij] + invLap[ij,ij] |
| 50 | } |
| 51 | ectd = ectd - 2*invLap |
| 52 | return (ectd) |
| 53 | } |
| 54 | |
| 55 | # Call Dijsktra algorithm on every vertex to build distances matrix |
| 56 | getShortestPathDistances = function(NI) |
| 57 | { |
| 58 | n = length(NI$ix) |
| 59 | distancesIn = matrix(NA,nrow=n,ncol=n) |
| 60 | for (i in 1:n) |
| 61 | distancesIn[i,NI$ix[[i]]] = NI$ds[[i]] |
| 62 | |
| 63 | distancesOut = matrix(nrow=n, ncol=n) |
| 64 | for (i in 1:n) |
| 65 | distancesOut[i,] = .Call("dijkstra", distancesIn, i) |
| 66 | return (distancesOut) |
| 67 | } |
| 68 | |
| 69 | ## MAIN CALL to get distances matrix |
| 70 | getDistances = function(dtype, NI) |
| 71 | { |
| 72 | distances = matrix() |
| 73 | if (dtype=="spath") |
| 74 | distances = getShortestPathDistances(NI) |
| 75 | else if (dtype=="ectd") |
| 76 | distances = getECTDistances(NI) |
| 77 | |
| 78 | diag(distances) = 0.0 #distances to self are zero |
| 79 | return (distances) |
| 80 | } |