| 1 | #' constructionModelesLassoRank |
| 2 | #' |
| 3 | #' Construct a collection of models with the Lasso-Rank procedure. |
| 4 | #' |
| 5 | #' @param S output of selectVariables.R |
| 6 | #' @param k number of components |
| 7 | #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 |
| 8 | #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 |
| 9 | #' @param X matrix of covariates (of size n*p) |
| 10 | #' @param Y matrix of responses (of size n*m) |
| 11 | #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 |
| 12 | #' @param rank.min integer, minimum rank in the low rank procedure, by default = 1 |
| 13 | #' @param rank.max integer, maximum rank in the low rank procedure, by default = 5 |
| 14 | #' @param ncores Number of cores, by default = 3 |
| 15 | #' @param fast TRUE to use compiled C code, FALSE for R code only |
| 16 | #' @param verbose TRUE to show some execution traces |
| 17 | #' |
| 18 | #' @return a list with several models, defined by phi (the regression parameter reparametrized), |
| 19 | #' rho (the covariance parameter reparametrized), pi (the proportion parameter is the mixture model), llh |
| 20 | #' (the value of the loglikelihood function for this estimator on the training dataset). The list is given |
| 21 | #' for several levels of sparsity, given by several regularization parameters computed automatically, |
| 22 | #' and several ranks (between rank.min and rank.max). |
| 23 | #' |
| 24 | #' @export |
| 25 | constructionModelesLassoRank <- function(S, k, mini, maxi, X, Y, eps, rank.min, rank.max, |
| 26 | ncores, fast, verbose) |
| 27 | { |
| 28 | n <- nrow(X) |
| 29 | p <- ncol(X) |
| 30 | m <- ncol(Y) |
| 31 | L <- length(S) |
| 32 | |
| 33 | # Possible interesting ranks |
| 34 | deltaRank <- rank.max - rank.min + 1 |
| 35 | Size <- deltaRank^k |
| 36 | RankLambda <- matrix(0, nrow = Size * L, ncol = k + 1) |
| 37 | for (r in 1:k) |
| 38 | { |
| 39 | # On veut le tableau de toutes les combinaisons de rangs possibles, et des |
| 40 | # lambdas Dans la premiere colonne : on repete (rank.max-rank.min)^(k-1) chaque |
| 41 | # chiffre : ca remplit la colonne Dans la deuxieme : on repete |
| 42 | # (rank.max-rank.min)^(k-2) chaque chiffre, et on fait ca (rank.max-rank.min)^2 |
| 43 | # fois ... Dans la derniere, on repete chaque chiffre une fois, et on fait ca |
| 44 | # (rank.min-rank.max)^(k-1) fois. |
| 45 | RankLambda[, r] <- rep(rank.min + rep(0:(deltaRank - 1), deltaRank^(r - 1), |
| 46 | each = deltaRank^(k - r)), each = L) |
| 47 | } |
| 48 | RankLambda[, k + 1] <- rep(1:L, times = Size) |
| 49 | |
| 50 | if (ncores > 1) |
| 51 | { |
| 52 | cl <- parallel::makeCluster(ncores, outfile = "") |
| 53 | parallel::clusterExport(cl, envir = environment(), varlist = c("A1", "Size", |
| 54 | "Pi", "Rho", "mini", "maxi", "X", "Y", "eps", "Rank", "m", "phi", "ncores", |
| 55 | "verbose")) |
| 56 | } |
| 57 | |
| 58 | computeAtLambda <- function(index) |
| 59 | { |
| 60 | lambdaIndex <- RankLambda[index, k + 1] |
| 61 | rankIndex <- RankLambda[index, 1:k] |
| 62 | if (ncores > 1) |
| 63 | require("valse") #workers start with an empty environment |
| 64 | |
| 65 | # 'relevant' will be the set of relevant columns |
| 66 | selected <- S[[lambdaIndex]]$selected |
| 67 | relevant <- c() |
| 68 | for (j in 1:p) |
| 69 | { |
| 70 | if (length(selected[[j]]) > 0) |
| 71 | relevant <- c(relevant, j) |
| 72 | } |
| 73 | if (max(rankIndex) < length(relevant)) |
| 74 | { |
| 75 | phi <- array(0, dim = c(p, m, k)) |
| 76 | if (length(relevant) > 0) |
| 77 | { |
| 78 | res <- EMGrank(S[[lambdaIndex]]$Pi, S[[lambdaIndex]]$Rho, mini, maxi, |
| 79 | X[, relevant], Y, eps, rankIndex, fast) |
| 80 | llh <- c(res$LLF, sum(rankIndex * (length(relevant) - rankIndex + m))) |
| 81 | phi[relevant, , ] <- res$phi |
| 82 | } |
| 83 | list(llh = llh, phi = phi, pi = S[[lambdaIndex]]$Pi, rho = S[[lambdaIndex]]$Rho) |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | # For each lambda in the grid we compute the estimators |
| 88 | out <- |
| 89 | if (ncores > 1) { |
| 90 | parallel::parLapply(cl, seq_len(length(S) * Size), computeAtLambda) |
| 91 | } else { |
| 92 | lapply(seq_len(length(S) * Size), computeAtLambda) |
| 93 | } |
| 94 | |
| 95 | if (ncores > 1) |
| 96 | parallel::stopCluster(cl) |
| 97 | |
| 98 | out |
| 99 | } |