| 1 | #' @include Forecaster.R |
| 2 | #' |
| 3 | #' Neighbors Forecaster |
| 4 | #' |
| 5 | #' Predict tomorrow as a weighted combination of "futures of the past" days. |
| 6 | #' Inherits \code{\link{Forecaster}} |
| 7 | #' |
| 8 | NeighborsForecaster = R6::R6Class("NeighborsForecaster", |
| 9 | inherit = Forecaster, |
| 10 | |
| 11 | public = list( |
| 12 | predictShape = function(data, today, memory, horizon, ...) |
| 13 | { |
| 14 | # (re)initialize computed parameters |
| 15 | private$.params <- list("weights"=NA, "indices"=NA, "window"=NA) |
| 16 | |
| 17 | # Do not forecast on days with NAs (TODO: softer condition...) |
| 18 | if (any(is.na(data$getCenteredSerie(today)))) |
| 19 | return (NA) |
| 20 | |
| 21 | # Determine indices of no-NAs days followed by no-NAs tomorrows |
| 22 | fdays = getNoNA2(data, max(today-memory,1), today-1) |
| 23 | |
| 24 | # Get optional args |
| 25 | simtype = ifelse(hasArg("simtype"), list(...)$simtype, "mix") #or "endo", or "exo" |
| 26 | kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan" |
| 27 | if (hasArg(h_window)) |
| 28 | { |
| 29 | return ( private$.predictShapeAux(data, |
| 30 | fdays, today, horizon, list(...)$h_window, kernel, simtype, TRUE) ) |
| 31 | } |
| 32 | |
| 33 | # Indices of similar days for cross-validation; TODO: 45 = magic number |
| 34 | sdays = getSimilarDaysIndices(today, limit=45, same_season=FALSE) |
| 35 | |
| 36 | cv_days = intersect(fdays,sdays) |
| 37 | # Limit to 20 most recent matching days (TODO: 20 == magic number) |
| 38 | cv_days = sort(cv_days,decreasing=TRUE)[1:min(20,length(cv_days))] |
| 39 | |
| 40 | # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days |
| 41 | errorOnLastNdays = function(h, kernel, simtype) |
| 42 | { |
| 43 | error = 0 |
| 44 | nb_jours = 0 |
| 45 | for (i in seq_along(cv_days)) |
| 46 | { |
| 47 | # mix_strategy is never used here (simtype != "mix"), therefore left blank |
| 48 | prediction = private$.predictShapeAux(data, |
| 49 | fdays, cv_days[i], horizon, h, kernel, simtype, FALSE) |
| 50 | if (!is.na(prediction[1])) |
| 51 | { |
| 52 | nb_jours = nb_jours + 1 |
| 53 | error = error + |
| 54 | mean((data$getCenteredSerie(cv_days[i]+1)[1:horizon] - prediction)^2) |
| 55 | } |
| 56 | } |
| 57 | return (error / nb_jours) |
| 58 | } |
| 59 | |
| 60 | if (simtype != "endo") |
| 61 | { |
| 62 | h_best_exo = optimize( |
| 63 | errorOnLastNdays, c(0,10), kernel=kernel, simtype="exo")$minimum |
| 64 | } |
| 65 | if (simtype != "exo") |
| 66 | { |
| 67 | h_best_endo = optimize( |
| 68 | errorOnLastNdays, c(0,10), kernel=kernel, simtype="endo")$minimum |
| 69 | } |
| 70 | |
| 71 | if (simtype == "endo") |
| 72 | { |
| 73 | return (private$.predictShapeAux(data, |
| 74 | fdays, today, horizon, h_best_endo, kernel, "endo", TRUE)) |
| 75 | } |
| 76 | if (simtype == "exo") |
| 77 | { |
| 78 | return (private$.predictShapeAux(data, |
| 79 | fdays, today, horizon, h_best_exo, kernel, "exo", TRUE)) |
| 80 | } |
| 81 | if (simtype == "mix") |
| 82 | { |
| 83 | h_best_mix = c(h_best_endo,h_best_exo) |
| 84 | return(private$.predictShapeAux(data, |
| 85 | fdays, today, horizon, h_best_mix, kernel, "mix", TRUE)) |
| 86 | } |
| 87 | } |
| 88 | ), |
| 89 | private = list( |
| 90 | # Precondition: "today" is full (no NAs) |
| 91 | .predictShapeAux = function(data, fdays, today, horizon, h, kernel, simtype, final_call) |
| 92 | { |
| 93 | fdays = fdays[ fdays < today ] |
| 94 | # TODO: 3 = magic number |
| 95 | if (length(fdays) < 3) |
| 96 | return (NA) |
| 97 | |
| 98 | if (simtype != "exo") |
| 99 | { |
| 100 | h_endo = ifelse(simtype=="mix", h[1], h) |
| 101 | |
| 102 | # Distances from last observed day to days in the past |
| 103 | serieToday = data$getSerie(today) |
| 104 | distances2 = sapply(fdays, function(i) { |
| 105 | delta = serieToday - data$getSerie(i) |
| 106 | mean(delta^2) |
| 107 | }) |
| 108 | |
| 109 | sd_dist = sd(distances2) |
| 110 | if (sd_dist < .Machine$double.eps) |
| 111 | { |
| 112 | # warning("All computed distances are very close: stdev too small") |
| 113 | sd_dist = 1 #mostly for tests... FIXME: |
| 114 | } |
| 115 | simils_endo = |
| 116 | if (kernel=="Gauss") |
| 117 | exp(-distances2/(sd_dist*h_endo^2)) |
| 118 | else |
| 119 | { |
| 120 | # Epanechnikov |
| 121 | u = 1 - distances2/(sd_dist*h_endo^2) |
| 122 | u[abs(u)>1] = 0. |
| 123 | u |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | if (simtype != "endo") |
| 128 | { |
| 129 | h_exo = ifelse(simtype=="mix", h[2], h) |
| 130 | |
| 131 | M = matrix( nrow=1+length(fdays), ncol=1+length(data$getExo(today)) ) |
| 132 | M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) ) |
| 133 | for (i in seq_along(fdays)) |
| 134 | M[i+1,] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) ) |
| 135 | |
| 136 | sigma = cov(M) #NOTE: robust covariance is way too slow |
| 137 | sigma_inv = solve(sigma) #TODO: use pseudo-inverse if needed? |
| 138 | |
| 139 | # Distances from last observed day to days in the past |
| 140 | distances2 = sapply(seq_along(fdays), function(i) { |
| 141 | delta = M[1,] - M[i+1,] |
| 142 | delta %*% sigma_inv %*% delta |
| 143 | }) |
| 144 | |
| 145 | sd_dist = sd(distances2) |
| 146 | if (sd_dist < .Machine$double.eps) |
| 147 | { |
| 148 | # warning("All computed distances are very close: stdev too small") |
| 149 | sd_dist = 1 #mostly for tests... FIXME: |
| 150 | } |
| 151 | simils_exo = |
| 152 | if (kernel=="Gauss") |
| 153 | exp(-distances2/(sd_dist*h_exo^2)) |
| 154 | else |
| 155 | { |
| 156 | # Epanechnikov |
| 157 | u = 1 - distances2/(sd_dist*h_exo^2) |
| 158 | u[abs(u)>1] = 0. |
| 159 | u |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | similarities = |
| 164 | if (simtype == "exo") |
| 165 | simils_exo |
| 166 | else if (simtype == "endo") |
| 167 | simils_endo |
| 168 | else #mix |
| 169 | simils_endo * simils_exo |
| 170 | |
| 171 | prediction = rep(0, horizon) |
| 172 | for (i in seq_along(fdays)) |
| 173 | prediction = prediction + similarities[i] * data$getCenteredSerie(fdays[i]+1)[1:horizon] |
| 174 | prediction = prediction / sum(similarities, na.rm=TRUE) |
| 175 | |
| 176 | if (final_call) |
| 177 | { |
| 178 | private$.params$weights <- similarities |
| 179 | private$.params$indices <- fdays |
| 180 | private$.params$window <- |
| 181 | if (simtype=="endo") |
| 182 | h_endo |
| 183 | else if (simtype=="exo") |
| 184 | h_exo |
| 185 | else #mix |
| 186 | c(h_endo,h_exo) |
| 187 | } |
| 188 | |
| 189 | return (prediction) |
| 190 | } |
| 191 | ) |
| 192 | ) |