| 1 | import { ChessRules, Move, PiPo } from "@/base_rules"; |
| 2 | import { ArrayFun } from "@/utils/array"; |
| 3 | import { randInt } from "@/utils/alea"; |
| 4 | |
| 5 | export class ColorboundRules extends ChessRules { |
| 6 | static get PawnSpecs() { |
| 7 | return Object.assign( |
| 8 | {}, |
| 9 | ChessRules.PawnSpecs, |
| 10 | { |
| 11 | promotions: |
| 12 | ChessRules.PawnSpecs.promotions.concat( |
| 13 | [V.C_ROOK, V.C_KNIGHT, V.C_BISHOP, V.C_QUEEN]) |
| 14 | } |
| 15 | ); |
| 16 | } |
| 17 | |
| 18 | getPpath(b) { |
| 19 | if ([V.C_ROOK, V.C_KNIGHT, V.C_BISHOP, V.C_QUEEN].includes(b[1])) |
| 20 | return "Colorbound/" + b; |
| 21 | return b; |
| 22 | } |
| 23 | |
| 24 | static GenRandInitFen(randomness) { |
| 25 | if (randomness == 0) |
| 26 | return "dhaskahd/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w 0 ahah -"; |
| 27 | |
| 28 | // Mapping white --> black (at least at start): |
| 29 | const piecesMap = { |
| 30 | 'r': 'd', |
| 31 | 'n': 'h', |
| 32 | 'b': 'a', |
| 33 | 'q': 's', |
| 34 | 'k': 'k' |
| 35 | }; |
| 36 | |
| 37 | let pieces = { w: new Array(8), b: new Array(8) }; |
| 38 | let flags = ""; |
| 39 | // Shuffle pieces on first (and last rank if randomness == 2) |
| 40 | for (let c of ["w", "b"]) { |
| 41 | if (c == 'b' && randomness == 1) { |
| 42 | pieces['b'] = pieces['w'].map(p => piecesMap[p]); |
| 43 | flags += flags; |
| 44 | break; |
| 45 | } |
| 46 | |
| 47 | // TODO: same code as in base_rules. Should extract and factorize? |
| 48 | |
| 49 | let positions = ArrayFun.range(8); |
| 50 | |
| 51 | let randIndex = 2 * randInt(4); |
| 52 | const bishop1Pos = positions[randIndex]; |
| 53 | let randIndex_tmp = 2 * randInt(4) + 1; |
| 54 | const bishop2Pos = positions[randIndex_tmp]; |
| 55 | positions.splice(Math.max(randIndex, randIndex_tmp), 1); |
| 56 | positions.splice(Math.min(randIndex, randIndex_tmp), 1); |
| 57 | |
| 58 | randIndex = randInt(6); |
| 59 | const knight1Pos = positions[randIndex]; |
| 60 | positions.splice(randIndex, 1); |
| 61 | randIndex = randInt(5); |
| 62 | const knight2Pos = positions[randIndex]; |
| 63 | positions.splice(randIndex, 1); |
| 64 | |
| 65 | randIndex = randInt(4); |
| 66 | const queenPos = positions[randIndex]; |
| 67 | positions.splice(randIndex, 1); |
| 68 | |
| 69 | const rook1Pos = positions[0]; |
| 70 | const kingPos = positions[1]; |
| 71 | const rook2Pos = positions[2]; |
| 72 | |
| 73 | pieces[c][rook1Pos] = "r"; |
| 74 | pieces[c][knight1Pos] = "n"; |
| 75 | pieces[c][bishop1Pos] = "b"; |
| 76 | pieces[c][queenPos] = "q"; |
| 77 | pieces[c][kingPos] = "k"; |
| 78 | pieces[c][bishop2Pos] = "b"; |
| 79 | pieces[c][knight2Pos] = "n"; |
| 80 | pieces[c][rook2Pos] = "r"; |
| 81 | if (c == 'b') pieces[c] = pieces[c].map(p => piecesMap[p]); |
| 82 | flags += V.CoordToColumn(rook1Pos) + V.CoordToColumn(rook2Pos); |
| 83 | } |
| 84 | // Add turn + flags + enpassant |
| 85 | return ( |
| 86 | pieces["b"].join("") + |
| 87 | "/pppppppp/8/8/8/8/PPPPPPPP/" + |
| 88 | pieces["w"].join("").toUpperCase() + |
| 89 | " w 0 " + flags + " -" |
| 90 | ); |
| 91 | } |
| 92 | |
| 93 | static get C_ROOK() { |
| 94 | return 'd'; |
| 95 | } |
| 96 | static get C_KNIGHT() { |
| 97 | return 'h'; |
| 98 | } |
| 99 | static get C_BISHOP() { |
| 100 | return 'a'; |
| 101 | } |
| 102 | static get C_QUEEN() { |
| 103 | return 's'; |
| 104 | } |
| 105 | |
| 106 | static get PIECES() { |
| 107 | return ( |
| 108 | ChessRules.PIECES.concat([V.C_ROOK, V.C_KNIGHT, V.C_BISHOP, V.C_QUEEN]) |
| 109 | ); |
| 110 | } |
| 111 | |
| 112 | getPotentialMovesFrom([x, y]) { |
| 113 | switch (this.getPiece(x, y)) { |
| 114 | case V.C_ROOK: |
| 115 | return this.getPotentialC_rookMoves([x, y]); |
| 116 | case V.C_KNIGHT: |
| 117 | return this.getPotentialC_knightMoves([x, y]); |
| 118 | case V.C_BISHOP: |
| 119 | return this.getPotentialC_bishopMoves([x, y]); |
| 120 | case V.C_QUEEN: |
| 121 | return this.getPotentialC_queenMoves([x, y]); |
| 122 | default: |
| 123 | return super.getPotentialMovesFrom([x, y]); |
| 124 | } |
| 125 | return []; |
| 126 | } |
| 127 | |
| 128 | static get steps() { |
| 129 | return Object.assign( |
| 130 | {}, |
| 131 | ChessRules.steps, |
| 132 | { |
| 133 | // Dabbabah |
| 134 | 'd': [ |
| 135 | [-2, 0], |
| 136 | [0, -2], |
| 137 | [2, 0], |
| 138 | [0, 2] |
| 139 | ], |
| 140 | // Alfil |
| 141 | 'a': [ |
| 142 | [2, 2], |
| 143 | [2, -2], |
| 144 | [-2, 2], |
| 145 | [-2, -2] |
| 146 | ], |
| 147 | // Ferz |
| 148 | 'f': [ |
| 149 | [1, 1], |
| 150 | [1, -1], |
| 151 | [-1, 1], |
| 152 | [-1, -1] |
| 153 | ] |
| 154 | } |
| 155 | ); |
| 156 | } |
| 157 | |
| 158 | getPotentialC_rookMoves(sq) { |
| 159 | return ( |
| 160 | this.getSlideNJumpMoves(sq, V.steps[V.BISHOP]).concat( |
| 161 | this.getSlideNJumpMoves(sq, V.steps['d'], "oneStep")) |
| 162 | ); |
| 163 | } |
| 164 | |
| 165 | getPotentialC_knightMoves(sq) { |
| 166 | return ( |
| 167 | this.getSlideNJumpMoves(sq, V.steps['a'], "oneStep").concat( |
| 168 | this.getSlideNJumpMoves(sq, V.steps[V.ROOK], "oneStep")) |
| 169 | ); |
| 170 | } |
| 171 | |
| 172 | getPotentialC_bishopMoves(sq) { |
| 173 | return ( |
| 174 | this.getSlideNJumpMoves(sq, V.steps['d'], "oneStep").concat( |
| 175 | this.getSlideNJumpMoves(sq, V.steps['a'], "oneStep")).concat( |
| 176 | this.getSlideNJumpMoves(sq, V.steps[V.BISHOP], "oneStep")) |
| 177 | ); |
| 178 | } |
| 179 | |
| 180 | getPotentialC_queenMoves(sq) { |
| 181 | return ( |
| 182 | this.getSlideNJumpMoves(sq, V.steps[V.BISHOP]).concat( |
| 183 | this.getSlideNJumpMoves(sq, V.steps[V.KNIGHT], "oneStep")) |
| 184 | ); |
| 185 | } |
| 186 | |
| 187 | // TODO: really find a way to avoid duolicating most of the castling code |
| 188 | // each time: here just the queenside castling squares change for black. |
| 189 | getCastleMoves([x, y]) { |
| 190 | const c = this.getColor(x, y); |
| 191 | if (x != (c == "w" ? V.size.x - 1 : 0) || y != this.INIT_COL_KING[c]) |
| 192 | return []; |
| 193 | |
| 194 | const oppCol = V.GetOppCol(c); |
| 195 | let moves = []; |
| 196 | let i = 0; |
| 197 | // King, then rook: |
| 198 | const finalSquares = [ |
| 199 | // Black castle long in an unusual way: |
| 200 | (c == 'w' ? [2, 3] : [1, 2]), |
| 201 | [V.size.y - 2, V.size.y - 3] |
| 202 | ]; |
| 203 | castlingCheck: for ( |
| 204 | let castleSide = 0; |
| 205 | castleSide < 2; |
| 206 | castleSide++ //large, then small |
| 207 | ) { |
| 208 | if (this.castleFlags[c][castleSide] >= V.size.y) continue; |
| 209 | |
| 210 | const rookPos = this.castleFlags[c][castleSide]; |
| 211 | const castlingPiece = this.getPiece(x, rookPos); |
| 212 | const finDist = finalSquares[castleSide][0] - y; |
| 213 | let step = finDist / Math.max(1, Math.abs(finDist)); |
| 214 | i = y; |
| 215 | do { |
| 216 | if ( |
| 217 | this.isAttacked([x, i], oppCol) || |
| 218 | (this.board[x][i] != V.EMPTY && |
| 219 | (this.getColor(x, i) != c || |
| 220 | ![V.KING, castlingPiece].includes(this.getPiece(x, i)))) |
| 221 | ) { |
| 222 | continue castlingCheck; |
| 223 | } |
| 224 | i += step; |
| 225 | } while (i != finalSquares[castleSide][0]); |
| 226 | |
| 227 | step = castleSide == 0 ? -1 : 1; |
| 228 | for (i = y + step; i != rookPos; i += step) { |
| 229 | if (this.board[x][i] != V.EMPTY) continue castlingCheck; |
| 230 | } |
| 231 | |
| 232 | for (i = 0; i < 2; i++) { |
| 233 | if ( |
| 234 | finalSquares[castleSide][i] != rookPos && |
| 235 | this.board[x][finalSquares[castleSide][i]] != V.EMPTY && |
| 236 | ( |
| 237 | this.getPiece(x, finalSquares[castleSide][i]) != V.KING || |
| 238 | this.getColor(x, finalSquares[castleSide][i]) != c |
| 239 | ) |
| 240 | ) { |
| 241 | continue castlingCheck; |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | moves.push( |
| 246 | new Move({ |
| 247 | appear: [ |
| 248 | new PiPo({ |
| 249 | x: x, |
| 250 | y: finalSquares[castleSide][0], |
| 251 | p: V.KING, |
| 252 | c: c |
| 253 | }), |
| 254 | new PiPo({ |
| 255 | x: x, |
| 256 | y: finalSquares[castleSide][1], |
| 257 | p: castlingPiece, |
| 258 | c: c |
| 259 | }) |
| 260 | ], |
| 261 | vanish: [ |
| 262 | new PiPo({ x: x, y: y, p: V.KING, c: c }), |
| 263 | new PiPo({ x: x, y: rookPos, p: castlingPiece, c: c }) |
| 264 | ], |
| 265 | end: |
| 266 | Math.abs(y - rookPos) <= 2 |
| 267 | ? { x: x, y: rookPos } |
| 268 | : { x: x, y: y + 2 * (castleSide == 0 ? -1 : 1) } |
| 269 | }) |
| 270 | ); |
| 271 | } |
| 272 | |
| 273 | return moves; |
| 274 | } |
| 275 | |
| 276 | isAttacked(sq, color) { |
| 277 | return ( |
| 278 | super.isAttacked(sq, color) || |
| 279 | this.isAttackedByC_rook(sq, color) || |
| 280 | this.isAttackedByC_knight(sq, color) || |
| 281 | this.isAttackedByC_bishop(sq, color) || |
| 282 | this.isAttackedByC_queen(sq, color) |
| 283 | ); |
| 284 | } |
| 285 | |
| 286 | isAttackedByC_rook(sq, color) { |
| 287 | return ( |
| 288 | this.isAttackedBySlideNJump(sq, color, V.C_ROOK, V.steps[V.BISHOP]) || |
| 289 | this.isAttackedBySlideNJump( |
| 290 | sq, color, V.C_ROOK, V.steps['d'], "oneStep") |
| 291 | ); |
| 292 | } |
| 293 | |
| 294 | isAttackedByC_knight(sq, color) { |
| 295 | return ( |
| 296 | this.isAttackedBySlideNJump( |
| 297 | sq, color, V.C_KNIGHT, V.steps[V.ROOK], "oneStep") || |
| 298 | this.isAttackedBySlideNJump( |
| 299 | sq, color, V.C_KNIGHT, V.steps['a'], "oneStep") |
| 300 | ); |
| 301 | } |
| 302 | |
| 303 | isAttackedByC_bishop(sq, color) { |
| 304 | return ( |
| 305 | this.isAttackedBySlideNJump( |
| 306 | sq, color, V.C_BISHOP, V.steps['d'], "oneStep") || |
| 307 | this.isAttackedBySlideNJump( |
| 308 | sq, color, V.C_BISHOP, V.steps['a'], "oneStep") || |
| 309 | this.isAttackedBySlideNJump( |
| 310 | sq, color, V.C_BISHOP, V.steps['f'], "oneStep") |
| 311 | ); |
| 312 | } |
| 313 | |
| 314 | isAttackedByC_queen(sq, color) { |
| 315 | return ( |
| 316 | this.isAttackedBySlideNJump(sq, color, V.C_QUEEN, V.steps[V.BISHOP]) || |
| 317 | this.isAttackedBySlideNJump( |
| 318 | sq, color, V.C_ROOK, V.steps[V.KNIGHT], "oneStep") |
| 319 | ); |
| 320 | } |
| 321 | |
| 322 | static get VALUES() { |
| 323 | return Object.assign( |
| 324 | {}, |
| 325 | ChessRules.VALUES, |
| 326 | { |
| 327 | d: 4, |
| 328 | h: 3, |
| 329 | a: 5, |
| 330 | s: 6 |
| 331 | } |
| 332 | ); |
| 333 | } |
| 334 | }; |