| 1 | #' agghoo |
| 2 | #' |
| 3 | #' Run the agghoo procedure (or standard cross-validation). |
| 4 | #' Arguments specify the list of models, their parameters and the |
| 5 | #' cross-validation settings, among others. |
| 6 | #' |
| 7 | #' @param data Data frame or matrix containing the data in lines. |
| 8 | #' @param target The target values to predict. Generally a vector, |
| 9 | #' but possibly a matrix in the case of "soft classification". |
| 10 | #' @param task "classification" or "regression". Default: |
| 11 | #' regression if target is numerical, classification otherwise. |
| 12 | #' @param gmodel A "generic model", which is a function returning a predict |
| 13 | #' function (taking X as only argument) from the tuple |
| 14 | #' (dataHO, targetHO, param), where 'HO' stands for 'Hold-Out', |
| 15 | #' referring to cross-validation. Cross-validation is run on an array |
| 16 | #' of 'param's. See params argument. Default: see R6::Model. |
| 17 | #' @param params A list of parameters. Often, one list cell is just a |
| 18 | #' numerical value, but in general it could be of any type. |
| 19 | #' Default: see R6::Model. |
| 20 | #' @param loss A function assessing the error of a prediction. |
| 21 | #' Arguments are y1 and y2 (comparing a prediction to known values). |
| 22 | #' loss(y1, y2) --> real number (error). Default: see R6::AgghooCV. |
| 23 | #' |
| 24 | #' @return |
| 25 | #' An R6::AgghooCV object o. Then, call o$fit() and finally o$predict(newData) |
| 26 | #' |
| 27 | #' @examples |
| 28 | #' # Regression: |
| 29 | #' a_reg <- agghoo(iris[,-c(2,5)], iris[,2]) |
| 30 | #' a_reg$fit() |
| 31 | #' pr <- a_reg$predict(iris[,-c(2,5)] + rnorm(450, sd=0.1)) |
| 32 | #' # Classification |
| 33 | #' a_cla <- agghoo(iris[,-5], iris[,5]) |
| 34 | #' a_cla$fit() |
| 35 | #' pc <- a_cla$predict(iris[,-5] + rnorm(600, sd=0.1)) |
| 36 | #' |
| 37 | #' @references |
| 38 | #' Guillaume Maillard, Sylvain Arlot, Matthieu Lerasle. "Aggregated hold-out". |
| 39 | #' Journal of Machine Learning Research 22(20):1--55, 2021. |
| 40 | #' |
| 41 | #' @export |
| 42 | agghoo <- function(data, target, task = NULL, gmodel = NULL, params = NULL, loss = NULL) { |
| 43 | # Args check: |
| 44 | if (!is.data.frame(data) && !is.matrix(data)) |
| 45 | stop("data: data.frame or matrix") |
| 46 | if (is.data.frame(target) || is.matrix(target)) { |
| 47 | if (nrow(target) != nrow(data) || ncol(target) == 1) |
| 48 | stop("target probability matrix does not match data size") |
| 49 | } |
| 50 | else if (!is.numeric(target) && !is.factor(target) && !is.character(target)) |
| 51 | stop("target: numeric, factor or character vector") |
| 52 | if (!is.null(task)) |
| 53 | task = match.arg(task, c("classification", "regression")) |
| 54 | if (is.character(gmodel)) |
| 55 | gmodel <- match.arg(gmodel, c("knn", "ppr", "rf", "tree")) |
| 56 | else if (!is.null(gmodel) && !is.function(gmodel)) |
| 57 | # No further checks here: fingers crossed :) |
| 58 | stop("gmodel: function(dataHO, targetHO, param) --> function(X) --> y") |
| 59 | if (is.numeric(params) || is.character(params)) |
| 60 | params <- as.list(params) |
| 61 | if (!is.list(params) && !is.null(params)) |
| 62 | stop("params: numerical, character, or list (passed to model)") |
| 63 | if (is.function(gmodel) && !is.list(params)) |
| 64 | stop("params must be provided when using a custom model") |
| 65 | if (is.list(params) && is.null(gmodel)) |
| 66 | stop("model (or family) must be provided when using custom params") |
| 67 | if (!is.null(loss) && !is.function(loss)) |
| 68 | # No more checks here as well... TODO:? |
| 69 | stop("loss: function(y1, y2) --> Real") |
| 70 | |
| 71 | if (is.null(task)) { |
| 72 | if (is.numeric(target)) |
| 73 | task = "regression" |
| 74 | else |
| 75 | task = "classification" |
| 76 | } |
| 77 | # Build Model object (= list of parameterized models) |
| 78 | model <- Model$new(data, target, task, gmodel, params) |
| 79 | # Return AgghooCV object, to run and predict |
| 80 | AgghooCV$new(data, target, task, model, loss) |
| 81 | } |