4c9cc558 |
1 | #' Plot |
2 | #' |
3 | #' It is a function which plots relevant parameters |
4 | #' |
5965d116 |
5 | #' @param X matrix of covariates (of size n*p) |
6 | #' @param Y matrix of responses (of size n*m) |
a6b60f91 |
7 | #' @param model the model constructed by valse procedure |
8 | #' @param n sample size |
4c9cc558 |
9 | #' @return several plots |
10 | #' |
11 | #' @examples TODO |
12 | #' |
13 | #' @export |
14 | #' |
5965d116 |
15 | plot_valse = function(X,Y,model,n, comp = FALSE, k1 = NA, k2 = NA){ |
4c9cc558 |
16 | require("gridExtra") |
17 | require("ggplot2") |
18 | require("reshape2") |
a6b60f91 |
19 | require("cowplot") |
4c9cc558 |
20 | |
a6b60f91 |
21 | K = length(model$pi) |
4c9cc558 |
22 | ## regression matrices |
23 | gReg = list() |
24 | for (r in 1:K){ |
25 | Melt = melt(t((model$phi[,,r]))) |
26 | gReg[[r]] = ggplot(data = Melt, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + |
27 | scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + |
28 | ggtitle(paste("Regression matrices in cluster",r)) |
29 | } |
30 | print(gReg) |
31 | |
32 | ## Differences between two clusters |
fb6e49cb |
33 | if (comp){ |
34 | if (is.na(k1) || is.na(k)){print('k1 and k2 must be integers, representing the clusters you want to compare')} |
35 | Melt = melt(t(model$phi[,,k1]-model$phi[,,k2])) |
36 | gDiff = ggplot(data = Melt, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + |
37 | scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + |
38 | ggtitle(paste("Difference between regression matrices in cluster",k1, "and", k2)) |
39 | print(gDiff) |
40 | |
41 | } |
4c9cc558 |
42 | |
43 | ### Covariance matrices |
44 | matCov = matrix(NA, nrow = dim(model$rho[,,1])[1], ncol = K) |
45 | for (r in 1:K){ |
46 | matCov[,r] = diag(model$rho[,,r]) |
47 | } |
48 | MeltCov = melt(matCov) |
49 | gCov = ggplot(data =MeltCov, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + |
50 | scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + |
51 | ggtitle("Covariance matrices") |
52 | print(gCov ) |
53 | |
fb6e49cb |
54 | ### Proportions |
4c9cc558 |
55 | gam2 = matrix(NA, ncol = K, nrow = n) |
56 | for (i in 1:n){ |
fb6e49cb |
57 | gam2[i, ] = c(model$proba[i, model$affec[i]], model$affec[i]) |
4c9cc558 |
58 | } |
9fadef2b |
59 | |
4c9cc558 |
60 | bp <- ggplot(data.frame(gam2), aes(x=X2, y=X1, color=X2, group = X2)) + |
a6b60f91 |
61 | geom_boxplot() + theme(legend.position = "none")+ background_grid(major = "xy", minor = "none") |
fb6e49cb |
62 | print(bp) |
4c9cc558 |
63 | |
64 | ### Mean in each cluster |
65 | XY = cbind(X,Y) |
66 | XY_class= list() |
67 | meanPerClass= matrix(0, ncol = K, nrow = dim(XY)[2]) |
68 | for (r in 1:K){ |
fb6e49cb |
69 | XY_class[[r]] = XY[model$affec == r, ] |
70 | if (sum(model$affec==r) == 1){ |
71 | meanPerClass[,r] = XY_class[[r]] |
72 | } else { |
73 | meanPerClass[,r] = apply(XY_class[[r]], 2, mean) |
74 | } |
4c9cc558 |
75 | } |
76 | data = data.frame(mean = as.vector(meanPerClass), cluster = as.character(rep(1:K, each = dim(XY)[2])), time = rep(1:dim(XY)[2],K)) |
77 | g = ggplot(data, aes(x=time, y = mean, group = cluster, color = cluster)) |
78 | print(g + geom_line(aes(linetype=cluster, color=cluster))+ geom_point(aes(color=cluster)) + ggtitle('Mean per cluster')) |
79 | |
80 | } |