4 void ew_predict_noNA(double* X
, double* Y
, int* n_
, int* K_
, double* alpha_
, int* grad_
, double* weight
)
8 double alpha
= *alpha_
;
11 //at least two experts to combine: various inits
12 double invMaxError
= 1. / 50; //TODO: magic number
14 double initWeight
= 1. / K
;
15 for (int i
=0; i
<K
; i
++)
16 weight
[i
] = initWeight
;
17 double* error
= (double*)malloc(K
*sizeof(double));
18 double* cumError
= (double*)calloc(K
, sizeof(double));
21 for (int t
=0; t
<n
; t
++ < n
)
26 for (int i
=0; i
<K
; i
++)
27 hatY
+= X
[t
*K
+i
] * weight
[i
];
28 for (int i
=0; i
<K
; i
++)
29 error
[i
] = 2. * (hatY
- Y
[t
]) * X
[t
*K
+i
];
33 for (int i
=0; i
<K
; i
++)
35 double delta
= X
[t
*K
+i
] - Y
[t
];
36 error
[i
] = delta
* delta
;
37 /* if ((X[t*K+i] <= 30 && Y[t] > 30) || (X[t*K+i] > 30 && Y[t] <= 30))
44 for (int i
=0; i
<K
; i
++)
45 cumError
[i
] += error
[i
];
49 //weight update is useless
53 //double eta = invMaxError * sqrt(8*logK/(t+1)); //TODO: good formula ?
54 double eta
= invMaxError
* 1. / (t
+1); //TODO: good formula ?
55 for (int i
=0; i
<K
; i
++)
56 weight
[i
] = exp(-eta
* cumError
[i
]);
57 double sumWeight
= 0.0;
58 for (int i
=0; i
<K
; i
++)
59 sumWeight
+= weight
[i
];
60 for (int i
=0; i
<K
; i
++)
61 weight
[i
] /= sumWeight
;
62 //redistribute weights if alpha > 0 (all weights are 0 or more, sum > 0)
63 for (int i
=0; i
<K
; i
++)
64 weight
[i
] = (1. - alpha
) * weight
[i
] + alpha
/K
;