1 #' constructionModelesLassoRank
3 #' Construct a collection of models with the Lasso-Rank procedure.
5 #' @param S output of selectVariables.R
6 #' @param k number of components
7 #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
8 #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
9 #' @param X matrix of covariates (of size n*p)
10 #' @param Y matrix of responses (of size n*m)
11 #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
12 #' @param rank.min integer, minimum rank in the low rank procedure, by default = 1
13 #' @param rank.max integer, maximum rank in the low rank procedure, by default = 5
14 #' @param ncores Number of cores, by default = 3
15 #' @param fast TRUE to use compiled C code, FALSE for R code only
16 #' @param verbose TRUE to show some execution traces
18 #' @return a list with several models, defined by phi, rho, pi, llh
21 constructionModelesLassoRank <- function(S, k, mini, maxi, X, Y, eps, rank.min, rank.max, ncores,
22 fast = TRUE, verbose = FALSE)
29 # Possible interesting ranks
30 deltaRank <- rank.max - rank.min + 1
32 RankLambda <- matrix(0, nrow = Size * L, ncol = k + 1)
35 # On veut le tableau de toutes les combinaisons de rangs possibles, et des lambdas Dans la
36 # première colonne : on répète (rank.max-rank.min)^(k-1) chaque chiffre : ça remplit la
37 # colonne Dans la deuxieme : on répète (rank.max-rank.min)^(k-2) chaque chiffre, et on fait
38 # ça (rank.max-rank.min)^2 fois ... Dans la dernière, on répète chaque chiffre une fois,
39 # et on fait ça (rank.min-rank.max)^(k-1) fois.
40 RankLambda[, r] <- rep(rank.min + rep(0:(deltaRank - 1), deltaRank^(r - 1), each = deltaRank^(k -
43 RankLambda[, k + 1] <- rep(1:L, times = Size)
47 cl <- parallel::makeCluster(ncores, outfile = "")
48 parallel::clusterExport(cl, envir = environment(), varlist = c("A1", "Size", "Pi",
49 "Rho", "mini", "maxi", "X", "Y", "eps", "Rank", "m", "phi", "ncores", "verbose"))
52 computeAtLambda <- function(index)
54 lambdaIndex <- RankLambda[index, k + 1]
55 rankIndex <- RankLambda[index, 1:k]
57 require("valse") #workers start with an empty environment
59 # 'relevant' will be the set of relevant columns
60 selected <- S[[lambdaIndex]]$selected
64 if (length(selected[[j]]) > 0)
66 relevant <- c(relevant, j)
69 if (max(rankIndex) < length(relevant))
71 phi <- array(0, dim = c(p, m, k))
72 if (length(relevant) > 0)
74 res <- EMGrank(S[[lambdaIndex]]$Pi, S[[lambdaIndex]]$Rho, mini, maxi, X[, relevant],
75 Y, eps, rankIndex, fast)
76 llh <- c(res$LLF, sum(rankIndex * (length(relevant) - rankIndex + m)))
77 phi[relevant, , ] <- res$phi
79 list(llh = llh, phi = phi, pi = S[[lambdaIndex]]$Pi, rho = S[[lambdaIndex]]$Rho)
84 # For each lambda in the grid we compute the estimators
85 out <- if (ncores > 1)
87 parLapply(cl, seq_len(length(S) * Size), computeAtLambda)
90 lapply(seq_len(length(S) * Size), computeAtLambda)
94 parallel::stopCluster(cl)