1 #' CLAWS: CLustering with wAvelets and Wer distanceS
3 #' Groups electricity power curves (or any series of similar nature) by applying PAM
4 #' algorithm in parallel to chunks of size \code{nb_series_per_chunk}. Input series
5 #' must be sampled on the same time grid, no missing values.
7 #' @param getSeries Access to the (time-)series, which can be of one of the three
10 #' \item matrix: each line contains all the values for one time-serie, ordered by time
11 #' \item connection: any R connection object (e.g. a file) providing lines as described above
12 #' \item function: a custom way to retrieve the curves; it has only one argument:
13 #' the indices of the series to be retrieved. See examples
15 #' @inheritParams clustering
16 #' @param K1 Number of super-consumers to be found after stage 1 (K1 << N)
17 #' @param K2 Number of clusters to be found after stage 2 (K2 << K1)
18 #' @param wf Wavelet transform filter; see ?wavelets::wt.filter
19 #' @param ctype Type of contribution: "relative" or "absolute" (or any prefix)
20 #' @param WER "end" to apply stage 2 after stage 1 has fully iterated, or "mix" to apply stage 2
21 #' at the end of each task
22 #' @param random TRUE (default) for random chunks repartition
23 #' @param ntasks Number of tasks (parallel iterations to obtain K1 medoids); default: 1.
24 #' Note: ntasks << N, so that N is "roughly divisible" by N (number of series)
25 #' @param ncores_tasks "MPI" number of parallel tasks (1 to disable: sequential tasks)
26 #' @param ncores_clust "OpenMP" number of parallel clusterings in one task
27 #' @param nb_series_per_chunk (~Maximum) number of series in each group, inside a task
28 #' @param min_series_per_chunk Minimum number of series in each group
29 #' @param sep Separator in CSV input file (if any provided)
30 #' @param nbytes Number of bytes to serialize a floating-point number; 4 or 8
31 #' @param endian Endianness to use for (de)serialization. Use "little" or "big" for portability
32 #' @param verbose Level of verbosity (0/FALSE for nothing or 1/TRUE for all; devel stage)
34 #' @return A matrix of the final medoids curves (K2) in rows
38 #' # WER distances computations are a bit too long for CRAN (for now)
40 #' # Random series around cos(x,2x,3x)/sin(x,2x,3x)
41 #' x = seq(0,500,0.05)
42 #' L = length(x) #10001
43 #' ref_series = matrix( c(cos(x), cos(2*x), cos(3*x), sin(x), sin(2*x), sin(3*x)),
44 #' byrow=TRUE, ncol=L )
46 #' series = do.call( rbind, lapply( 1:6, function(i)
47 #' do.call(rbind, wmtsa::wavBootstrap(ref_series[i,], n.realization=400)) ) )
48 #' #dim(series) #c(2400,10001)
49 #' medoids_ascii = claws(series, K1=60, K2=6, "d8", "rel", nb_series_per_chunk=500)
51 #' # Same example, from CSV file
52 #' csv_file = "/tmp/epclust_series.csv"
53 #' write.table(series, csv_file, sep=",", row.names=FALSE, col.names=FALSE)
54 #' medoids_csv = claws(csv_file, K1=60, K2=6, "d8", "rel", nb_series_per_chunk=500)
56 #' # Same example, from binary file
57 #' bin_file = "/tmp/epclust_series.bin"
60 #' epclust::binarize(csv_file, bin_file, 500, nbytes, endian)
61 #' getSeries = function(indices) getDataInFile(indices, bin_file, nbytes, endian)
62 #' medoids_bin = claws(getSeries, K1=60, K2=6, "d8", "rel", nb_series_per_chunk=500)
66 #' # Same example, from SQLite database
68 #' series_db <- dbConnect(RSQLite::SQLite(), "file::memory:")
69 #' # Prepare data.frame in DB-format
71 #' time_values = data.frame(
72 #' id = rep(1:n,each=L),
73 #' time = rep( as.POSIXct(1800*(0:n),"GMT",origin="2001-01-01"), L ),
74 #' value = as.double(t(series)) )
75 #' dbWriteTable(series_db, "times_values", times_values)
76 #' # Fill associative array, map index to identifier
77 #' indexToID_inDB <- as.character(
78 #' dbGetQuery(series_db, 'SELECT DISTINCT id FROM time_values')[,"id"] )
79 #' getSeries = function(indices) {
80 #' request = "SELECT id,value FROM times_values WHERE id in ("
82 #' request = paste(request, i, ",", sep="")
83 #' request = paste(request, ")", sep="")
84 #' df_series = dbGetQuery(series_db, request)
85 #' # Assume that all series share same length at this stage
86 #' ts_length = sum(df_series[,"id"] == df_series[1,"id"])
87 #' t( as.matrix(df_series[,"value"], nrow=ts_length) )
89 #' medoids_db = claws(getSeries, K1=60, K2=6, "d8", "rel", nb_series_per_chunk=500)
90 #' dbDisconnect(series_db)
92 #' # All computed medoids should be the same:
93 #' digest::sha1(medoids_ascii)
94 #' digest::sha1(medoids_csv)
95 #' digest::sha1(medoids_bin)
96 #' digest::sha1(medoids_db)
99 claws = function(getSeries, K1, K2,
102 random=TRUE, #randomize series order?
103 ntasks=1, ncores_tasks=1, ncores_clust=4, #control parallelism
104 nb_series_per_chunk=50*K1, min_series_per_chunk=5*K1, #chunk size
105 sep=",", #ASCII input separator
106 nbytes=4, endian=.Platform$endian, #serialization (write,read)
109 # Check/transform arguments
110 if (!is.matrix(getSeries) && !is.function(getSeries) &&
111 !methods::is(getSeries, "connection" && !is.character(getSeries)))
113 stop("'getSeries': matrix, function, file or valid connection (no NA)")
115 K1 = .toInteger(K1, function(x) x>=2)
116 K2 = .toInteger(K2, function(x) x>=2)
117 if (!is.logical(random))
118 stop("'random': logical")
120 {ignored <- wavelets::wt.filter(wf)},
121 error = function(e) stop("Invalid wavelet filter; see ?wavelets::wt.filter"))
122 if (WER!="end" && WER!="mix")
123 stop("WER takes values in {'end','mix'}")
124 ntasks = .toInteger(ntasks, function(x) x>=1)
125 ncores_tasks = .toInteger(ncores_tasks, function(x) x>=1)
126 ncores_clust = .toInteger(ncores_clust, function(x) x>=1)
127 nb_series_per_chunk = .toInteger(nb_series_per_chunk, function(x) x>=K1)
128 min_series_per_chunk = .toInteger(K1, function(x) x>=K1 && x<=nb_series_per_chunk)
129 if (!is.character(sep))
130 stop("'sep': character")
131 nbytes = .toInteger(nbytes, function(x) x==4 || x==8)
133 # Serialize series if required, to always use a function
134 bin_dir = ".epclust.bin/"
135 dir.create(bin_dir, showWarnings=FALSE, mode="0755")
136 if (!is.function(getSeries))
139 cat("...Serialize time-series\n")
140 series_file = paste(bin_dir,"data",sep="") ; unlink(series_file)
141 binarize(getSeries, series_file, nb_series_per_chunk, sep, nbytes, endian)
142 getSeries = function(inds) getDataInFile(inds, series_file, nbytes, endian)
145 # Serialize all computed wavelets contributions onto a file
146 contribs_file = paste(bin_dir,"contribs",sep="") ; unlink(contribs_file)
150 cat("...Compute contributions and serialize them\n")
153 series = getSeries((index-1)+seq_len(nb_series_per_chunk))
156 contribs_chunk = curvesToContribs(series, wf, ctype)
157 binarize(contribs_chunk, contribs_file, nb_series_per_chunk, sep, nbytes, endian)
158 index = index + nb_series_per_chunk
159 nb_curves = nb_curves + nrow(contribs_chunk)
161 getContribs = function(indices) getDataInFile(indices, contribs_file, nbytes, endian)
163 if (nb_curves < min_series_per_chunk)
164 stop("Not enough data: less rows than min_series_per_chunk!")
165 nb_series_per_task = round(nb_curves / ntasks)
166 if (nb_series_per_task < min_series_per_chunk)
167 stop("Too many tasks: less series in one task than min_series_per_chunk!")
169 # Cluster contributions in parallel (by nb_series_per_chunk)
170 indices_all = if (random) sample(nb_curves) else seq_len(nb_curves)
171 indices_tasks = lapply(seq_len(ntasks), function(i) {
172 upper_bound = ifelse( i<ntasks, min(nb_series_per_task*i,nb_curves), nb_curves )
173 indices_all[((i-1)*nb_series_per_task+1):upper_bound]
176 cat(paste("...Run ",ntasks," x stage 1 in parallel\n",sep=""))
177 # cl = parallel::makeCluster(ncores_tasks)
178 # parallel::clusterExport(cl, varlist=c("getSeries","getContribs","K1","K2",
179 # "nb_series_per_chunk","ncores_clust","synchrones_file","sep","nbytes","endian"),
180 # envir = environment())
181 # 1000*K1 indices [if WER=="end"], or empty vector [if WER=="mix"] --> series on file
182 # indices = unlist( parallel::parLapply(cl, indices_tasks, function(inds) {
183 indices = unlist( lapply(indices_tasks, function(inds) {
184 # require("epclust", quietly=TRUE)
186 browser() #TODO: CONTINUE DEBUG HERE
188 indices_medoids = clusteringTask(inds,getContribs,K1,nb_series_per_chunk,ncores_clust)
191 medoids2 = computeClusters2(
192 getSeries(indices_medoids), K2, getSeries, nb_series_per_chunk)
193 binarize(medoids2, synchrones_file, nb_series_per_chunk, sep, nbytes, endian)
194 return (vector("integer",0))
198 # parallel::stopCluster(cl)
200 getRefSeries = getSeries
201 synchrones_file = paste(bin_dir,"synchrones",sep="") ; unlink(synchrones_file)
204 indices = seq_len(ntasks*K2)
205 #Now series must be retrieved from synchrones_file
206 getSeries = function(inds) getDataInFile(inds, synchrones_file, nbytes, endian)
207 #Contributions must be re-computed
208 unlink(contribs_file)
211 cat("...Serialize contributions computed on synchrones\n")
214 series = getSeries((index-1)+seq_len(nb_series_per_chunk))
217 contribs_chunk = curvesToContribs(series, wf, ctype)
218 binarize(contribs_chunk, contribs_file, nb_series_per_chunk, sep, nbytes, endian)
219 index = index + nb_series_per_chunk
223 # Run step2 on resulting indices or series (from file)
225 cat("...Run final // stage 1 + stage 2\n")
226 indices_medoids = clusteringTask(
227 indices, getContribs, K1, nb_series_per_chunk, ncores_tasks*ncores_clust)
228 medoids = computeClusters2(getSeries(indices_medoids),K2,getRefSeries,nb_series_per_chunk)
231 unlink(bin_dir, recursive=TRUE)
238 #' Compute the discrete wavelet coefficients for each series, and aggregate them in
239 #' energy contribution across scales as described in https://arxiv.org/abs/1101.4744v2
241 #' @param series Matrix of series (in rows), of size n x L
242 #' @inheritParams claws
244 #' @return A matrix of size n x log(L) containing contributions in rows
247 curvesToContribs = function(series, wf, ctype)
249 L = length(series[1,])
250 D = ceiling( log2(L) )
251 nb_sample_points = 2^D
252 cont_types = c("relative","absolute")
253 ctype = cont_types[ pmatch(ctype,cont_types) ]
254 t( apply(series, 1, function(x) {
255 interpolated_curve = spline(1:L, x, n=nb_sample_points)$y
256 W = wavelets::dwt(interpolated_curve, filter=wf, D)@W
257 nrj = rev( sapply( W, function(v) ( sqrt( sum(v^2) ) ) ) )
258 if (ctype=="relative") nrj / sum(nrj) else nrj
262 # Helper for main function: check integer arguments with functiional conditions
263 .toInteger <- function(x, condition)
267 {x = as.integer(x)[1]},
268 error = function(e) paste("Cannot convert argument",substitute(x),"to integer")
271 stop(paste("Argument",substitute(x),"does not verify condition",body(condition)))