add comments, fix some things. TODO: comment tests, finish computeWerDists, test it
[epclust.git] / epclust / R / de_serialize.R
1 #' @name de_serialize
2 #' @rdname de_serialize
3 #' @aliases binarize binarizeTransform getDataInFile
4 #'
5 #' @title (De)Serialization of a [big]matrix or data stream
6 #'
7 #' @description \code{binarize()} serializes a matrix or CSV file with minimal overhead,
8 #' into a binary file. \code{getDataInFile()} achieves the inverse task: she retrieves
9 #' (ASCII) data rows from indices in the binary file. Finally,
10 #' \code{binarizeTransform()} serialize transformations of all data chunks; to use it,
11 #' a data-retrieval function must be provided, thus \code{binarize} will most likely be
12 #' used first (and then a function defined to seek in generated binary file)
13 #'
14 #' @param data_ascii Either a matrix or CSV file, with items in rows
15 #' @param indices Indices of the lines to retrieve
16 #' @param data_bin_file Name of binary file on output (\code{binarize})
17 #' or input (\code{getDataInFile})
18 #' @param nb_per_chunk Number of lines to process in one batch (big.matrix or connection)
19 #' @inheritParams claws
20 #' @param getData Function to retrieve data chunks
21 #' @param transform Transformation function to apply on data chunks
22 #'
23 #' @return For \code{getDataInFile()}, the matrix with rows corresponding to the
24 #' requested indices. \code{binarizeTransform} returns the number of processed lines.
25 #' \code{binarize} is designed to serialize in several calls, thus returns nothing.
26 NULL
27
28 #' @rdname de_serialize
29 #' @export
30 binarize = function(data_ascii, data_bin_file, nb_per_chunk,
31 sep=",", nbytes=4, endian=.Platform$endian)
32 {
33 # data_ascii can be of two types: [big.]matrix, or connection
34 if (is.character(data_ascii))
35 data_ascii = file(data_ascii, open="r")
36 else if (methods::is(data_ascii,"connection") && !isOpen(data_ascii))
37 open(data_ascii)
38 is_matrix = !methods::is(data_ascii,"connection")
39
40 # At first call, the length of a stored row is written. So it's important to determine
41 # if the serialization process already started.
42 first_write = (!file.exists(data_bin_file) || file.info(data_bin_file)$size == 0)
43
44 # Open the binary file for writing (or 'append' if already exists)
45 data_bin = file(data_bin_file, open=ifelse(first_write,"wb","ab"))
46
47 if (first_write)
48 {
49 # Write data length on first call: number of items always on 8 bytes
50 writeBin(0L, data_bin, size=8, endian=endian)
51 if (is_matrix)
52 data_length = nrow(data_ascii)
53 else #connection
54 {
55 # Read the first line to know data length, and write it then
56 data_line = scan(data_ascii, double(), sep=sep, nlines=1, quiet=TRUE)
57 writeBin(data_line, data_bin, size=nbytes, endian=endian)
58 data_length = length(data_line)
59 }
60 }
61
62 if (is_matrix)
63 {
64 # Data is processed by chunks; although this may not be so useful for (normal) matrix
65 # input, it could for a file-backed big.matrix. It's easier to follow a unified pattern.
66 index = 1
67 }
68 repeat
69 {
70 if (is_matrix)
71 {
72 data_chunk =
73 if (index <= ncol(data_ascii))
74 as.double(data_ascii[,index:min(ncol(data_ascii),index+nb_per_chunk-1)])
75 else
76 double(0)
77 index = index + nb_per_chunk
78 }
79 else #connection
80 data_chunk = scan(data_ascii, double(), sep=sep, nlines=nb_per_chunk, quiet=TRUE)
81
82 # Data size is unknown in the case of a connection
83 if (length(data_chunk)==0)
84 break
85
86 # Write this chunk of data to the binary file
87 writeBin(data_chunk, data_bin, size=nbytes, endian=endian)
88 }
89
90 if (first_write)
91 {
92 # Write data_length, = (file_size-1) / (nbytes*nbWritten) at offset 0 in data_bin
93 ignored = seek(data_bin, 0)
94 writeBin(data_length, data_bin, size=8, endian=endian)
95 }
96 close(data_bin)
97
98 if ( ! is_matrix )
99 close(data_ascii)
100 }
101
102 #' @rdname de_serialize
103 #' @export
104 binarizeTransform = function(getData, transform, data_bin_file, nb_per_chunk,
105 nbytes=4, endian=.Platform$endian)
106 {
107 nb_items = 0 #side-effect: store the number of transformed items
108 index = 1
109 repeat
110 {
111 # Retrieve a chunk of data in a binary file (generally obtained by binarize())
112 data_chunk = getData((index-1)+seq_len(nb_per_chunk))
113 if (is.null(data_chunk))
114 break
115
116 # Apply transformation on the current chunk (by columns)
117 transformed_chunk = transform(data_chunk)
118
119 # Save the result in binary format
120 binarize(transformed_chunk, data_bin_file, nb_per_chunk, ",", nbytes, endian)
121
122 index = index + nb_per_chunk
123 nb_items = nb_items + nrow(data_chunk)
124 }
125 nb_items #number of transformed items
126 }
127
128 #' @rdname de_serialize
129 #' @export
130 getDataInFile = function(indices, data_bin_file, nbytes=4, endian=.Platform$endian)
131 {
132 data_bin = file(data_bin_file, "rb") #source binary file
133
134 data_size = file.info(data_bin_file)$size #number of bytes in the file
135 # data_length: length of a vector in the binary file (first element, 8 bytes)
136 data_length = readBin(data_bin, "integer", n=1, size=8, endian=endian)
137
138 # Seek all 'indices' columns in the binary file, using data_length and nbytes
139 # to compute the offset ( index i at 8 + i*data_length*nbytes )
140 data_ascii = do.call( cbind, lapply( indices, function(i) {
141 offset = 8+(i-1)*data_length*nbytes
142 if (offset > data_size)
143 return (NULL)
144 ignored = seek(data_bin, offset) #position cursor at computed offset
145 readBin(data_bin, "double", n=data_length, size=nbytes, endian=endian)
146 } ) )
147 close(data_bin)
148
149 data_ascii #retrieved data, in columns
150 }