Commit | Line | Data |
---|---|---|
859c30ec | 1 | #' runValse |
3453829e BA |
2 | #' |
3 | #' Main function | |
4 | #' | |
5 | #' @param X matrix of covariates (of size n*p) | |
6 | #' @param Y matrix of responses (of size n*m) | |
7 | #' @param procedure among 'LassoMLE' or 'LassoRank' | |
8 | #' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC' | |
9 | #' @param gamma integer for the power in the penaly, by default = 1 | |
10 | #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 | |
11 | #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 | |
12 | #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 | |
13 | #' @param kmin integer, minimum number of clusters, by default = 2 | |
14 | #' @param kmax integer, maximum number of clusters, by default = 10 | |
15 | #' @param rank.min integer, minimum rank in the low rank procedure, by default = 1 | |
16 | #' @param rank.max integer, maximum rank in the low rank procedure, by default = 5 | |
17 | #' @param ncores_outer Number of cores for the outer loop on k | |
18 | #' @param ncores_inner Number of cores for the inner loop on lambda | |
19 | #' @param thresh real, threshold to say a variable is relevant, by default = 1e-8 | |
20 | #' @param grid_lambda, a vector with regularization parameters if known, by default numeric(0) | |
21 | #' @param size_coll_mod (Maximum) size of a collection of models | |
22 | #' @param fast TRUE to use compiled C code, FALSE for R code only | |
23 | #' @param verbose TRUE to show some execution traces | |
1196a43d | 24 | #' @param plot TRUE to plot the selected models after run |
3453829e BA |
25 | #' |
26 | #' @return a list with estimators of parameters | |
27 | #' | |
28 | #' @examples | |
29 | #' #TODO: a few examples | |
859c30ec | 30 | #' |
3453829e | 31 | #' @export |
859c30ec | 32 | runValse <- function(X, Y, procedure = "LassoMLE", selecMod = "DDSE", gamma = 1, mini = 10, |
0ba1b11c | 33 | maxi = 50, eps = 1e-04, kmin = 2, kmax = 3, rank.min = 1, rank.max = 5, ncores_outer = 1, |
3453829e BA |
34 | ncores_inner = 1, thresh = 1e-08, grid_lambda = numeric(0), size_coll_mod = 10, |
35 | fast = TRUE, verbose = FALSE, plot = TRUE) | |
36 | { | |
37 | n <- nrow(X) | |
38 | p <- ncol(X) | |
39 | m <- ncol(Y) | |
40 | ||
0ba1b11c | 41 | if (verbose) |
3453829e BA |
42 | print("main loop: over all k and all lambda") |
43 | ||
44 | if (ncores_outer > 1) { | |
45 | cl <- parallel::makeCluster(ncores_outer, outfile = "") | |
0ba1b11c BA |
46 | parallel::clusterExport(cl = cl, envir = environment(), varlist = c("X", |
47 | "Y", "procedure", "selecMod", "gamma", "mini", "maxi", "eps", "kmin", | |
48 | "kmax", "rank.min", "rank.max", "ncores_outer", "ncores_inner", "thresh", | |
3453829e BA |
49 | "size_coll_mod", "verbose", "p", "m")) |
50 | } | |
51 | ||
52 | # Compute models with k components | |
53 | computeModels <- function(k) | |
54 | { | |
0ba1b11c | 55 | if (ncores_outer > 1) |
3453829e BA |
56 | require("valse") #nodes start with an empty environment |
57 | ||
0ba1b11c | 58 | if (verbose) |
3453829e BA |
59 | print(paste("Parameters initialization for k =", k)) |
60 | # smallEM initializes parameters by k-means and regression model in each | |
61 | # component, doing this 20 times, and keeping the values maximizing the | |
62 | # likelihood after 10 iterations of the EM algorithm. | |
63 | P <- initSmallEM(k, X, Y, fast) | |
64 | if (length(grid_lambda) == 0) | |
65 | { | |
0ba1b11c | 66 | grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit, |
3453829e BA |
67 | X, Y, gamma, mini, maxi, eps, fast) |
68 | } | |
0ba1b11c | 69 | if (length(grid_lambda) > size_coll_mod) |
3453829e BA |
70 | grid_lambda <- grid_lambda[seq(1, length(grid_lambda), length.out = size_coll_mod)] |
71 | ||
0ba1b11c | 72 | if (verbose) |
3453829e BA |
73 | print("Compute relevant parameters") |
74 | # select variables according to each regularization parameter from the grid: | |
75 | # S$selected corresponding to selected variables | |
0ba1b11c | 76 | S <- selectVariables(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, maxi, |
3453829e BA |
77 | gamma, grid_lambda, X, Y, thresh, eps, ncores_inner, fast) |
78 | ||
79 | if (procedure == "LassoMLE") { | |
0ba1b11c | 80 | if (verbose) |
3453829e BA |
81 | print("run the procedure Lasso-MLE") |
82 | # compute parameter estimations, with the Maximum Likelihood Estimator, | |
83 | # restricted on selected variables. | |
0ba1b11c | 84 | models <- constructionModelesLassoMLE(P$phiInit, P$rhoInit, P$piInit, |
3453829e BA |
85 | P$gamInit, mini, maxi, gamma, X, Y, eps, S, ncores_inner, fast, verbose) |
86 | } else { | |
0ba1b11c | 87 | if (verbose) |
3453829e BA |
88 | print("run the procedure Lasso-Rank") |
89 | # compute parameter estimations, with the Low Rank Estimator, restricted on | |
90 | # selected variables. | |
0ba1b11c | 91 | models <- constructionModelesLassoRank(S, k, mini, maxi, X, Y, eps, rank.min, |
3453829e BA |
92 | rank.max, ncores_inner, fast, verbose) |
93 | } | |
94 | # warning! Some models are NULL after running selectVariables | |
95 | models <- models[sapply(models, function(cell) !is.null(cell))] | |
96 | models | |
97 | } | |
98 | ||
99 | # List (index k) of lists (index lambda) of models | |
100 | models_list <- | |
101 | if (ncores_outer > 1) { | |
102 | parLapply(cl, kmin:kmax, computeModels) | |
103 | } else { | |
104 | lapply(kmin:kmax, computeModels) | |
105 | } | |
0ba1b11c | 106 | if (ncores_outer > 1) |
3453829e BA |
107 | parallel::stopCluster(cl) |
108 | ||
109 | if (!requireNamespace("capushe", quietly = TRUE)) | |
110 | { | |
111 | warning("'capushe' not available: returning all models") | |
112 | return(models_list) | |
113 | } | |
114 | ||
115 | # Get summary 'tableauRecap' from models | |
116 | tableauRecap <- do.call(rbind, lapply(seq_along(models_list), function(i) | |
117 | { | |
118 | models <- models_list[[i]] | |
119 | # For a collection of models (same k, several lambda): | |
120 | LLH <- sapply(models, function(model) model$llh[1]) | |
121 | k <- length(models[[1]]$pi) | |
0ba1b11c | 122 | sumPen <- sapply(models, function(model) k * (dim(model$rho)[1] + sum(model$phi[, |
3453829e | 123 | , 1] != 0) + 1) - 1) |
0ba1b11c | 124 | data.frame(model = paste(i, ".", seq_along(models), sep = ""), pen = sumPen/n, |
3453829e BA |
125 | complexity = sumPen, contrast = -LLH) |
126 | })) | |
127 | tableauRecap <- tableauRecap[which(tableauRecap[, 4] != Inf), ] | |
128 | ||
129 | if (verbose == TRUE) | |
130 | print(tableauRecap) | |
131 | modSel <- capushe::capushe(tableauRecap, n) | |
0ba1b11c | 132 | indModSel <- if (selecMod == "DDSE") |
3453829e BA |
133 | { |
134 | as.numeric(modSel@DDSE@model) | |
0ba1b11c | 135 | } else if (selecMod == "Djump") |
3453829e BA |
136 | { |
137 | as.numeric(modSel@Djump@model) | |
0ba1b11c | 138 | } else if (selecMod == "BIC") |
3453829e BA |
139 | { |
140 | modSel@BIC_capushe$model | |
0ba1b11c | 141 | } else if (selecMod == "AIC") |
3453829e BA |
142 | { |
143 | modSel@AIC_capushe$model | |
144 | } | |
145 | ||
146 | listMod <- as.integer(unlist(strsplit(as.character(indModSel), "[.]"))) | |
147 | modelSel <- models_list[[listMod[1]]][[listMod[2]]] | |
148 | modelSel$tableau <- tableauRecap | |
149 | ||
150 | if (plot) | |
151 | print(plot_valse(X, Y, modelSel, n)) | |
152 | ||
153 | return(modelSel) | |
154 | } |