Commit | Line | Data |
---|---|---|
2279a641 BA |
1 | #' constructionModelesLassoMLE |
2 | #' | |
3 | #' TODO: description | |
4 | #' | |
5 | #' @param ... | |
6 | #' | |
7 | #' @return ... | |
8 | #' | |
9 | #' export | |
10 | constructionModelesLassoMLE = function(phiInit, rhoInit, piInit, gamInit, mini, maxi, | |
08f4604c | 11 | gamma, X, Y, thresh, tau, S, ncores=3, artefact = 1e3, verbose=FALSE) |
46a2e676 | 12 | { |
08f4604c BA |
13 | if (ncores > 1) |
14 | { | |
b9b0b72a | 15 | cl = parallel::makeCluster(ncores, outfile='') |
08f4604c BA |
16 | parallel::clusterExport( cl, envir=environment(), |
17 | varlist=c("phiInit","rhoInit","gamInit","mini","maxi","gamma","X","Y","thresh", | |
18 | "tau","S","ncores","verbose") ) | |
19 | } | |
20 | ||
21 | # Individual model computation | |
22 | computeAtLambda <- function(lambda) | |
23 | { | |
24 | if (ncores > 1) | |
25 | require("valse") #nodes start with an empty environment | |
26 | ||
27 | if (verbose) | |
28 | print(paste("Computations for lambda=",lambda)) | |
29 | ||
30 | n = dim(X)[1] | |
31 | p = dim(phiInit)[1] | |
32 | m = dim(phiInit)[2] | |
33 | k = dim(phiInit)[3] | |
34 | ||
35 | sel.lambda = S[[lambda]]$selected | |
36 | # col.sel = which(colSums(sel.lambda)!=0) #if boolean matrix | |
37 | col.sel <- which( sapply(sel.lambda,length) > 0 ) #if list of selected vars | |
38 | ||
39 | if (length(col.sel) == 0) | |
40 | return (NULL) | |
41 | ||
42 | # lambda == 0 because we compute the EMV: no penalization here | |
43 | res = EMGLLF(phiInit[col.sel,,],rhoInit,piInit,gamInit,mini,maxi,gamma,0, | |
44 | X[,col.sel],Y,tau) | |
45 | ||
46 | # Eval dimension from the result + selected | |
47 | phiLambda2 = res$phi | |
48 | rhoLambda = res$rho | |
49 | piLambda = res$pi | |
50 | phiLambda = array(0, dim = c(p,m,k)) | |
51 | for (j in seq_along(col.sel)) | |
52 | phiLambda[col.sel[j],,] = phiLambda2[j,,] | |
53 | dimension = length(unlist(sel.lambda)) | |
54 | ||
55 | # Computation of the loglikelihood | |
56 | densite = vector("double",n) | |
57 | for (r in 1:k) | |
58 | { | |
59 | delta = (Y%*%rhoLambda[,,r] - (X[, col.sel]%*%phiLambda[col.sel,,r]))/artefact | |
60 | print(max(delta)) | |
61 | densite = densite + piLambda[r] * | |
62 | det(rhoLambda[,,r])/(sqrt(2*base::pi))^m * exp(-tcrossprod(delta)/2.0) | |
63 | } | |
64 | llhLambda = c( sum(artefact^2 * log(densite)), (dimension+m+1)*k-1 ) | |
65 | list("phi"= phiLambda, "rho"= rhoLambda, "pi"= piLambda, "llh" = llhLambda) | |
66 | } | |
67 | ||
68 | # For each lambda, computation of the parameters | |
69 | out = | |
70 | if (ncores > 1) | |
71 | parLapply(cl, 1:length(S), computeAtLambda) | |
b9b0b72a BA |
72 | else |
73 | lapply(1:length(S), computeAtLambda) | |
08f4604c BA |
74 | |
75 | if (ncores > 1) | |
76 | parallel::stopCluster(cl) | |
77 | ||
78 | out | |
c3bc4705 | 79 | } |