before computeSynchrones
[epclust.git] / epclust / R / clustering.R
CommitLineData
7b13d0c2 1# Cluster one full task (nb_curves / ntasks series)
e205f218
BA
2clusteringTask = function(indices,getSeries,getSeriesForSynchrones,synchrones_file,
3 getCoefs,K1,K2,nb_series_per_chunk,ncores,to_file)
5c652979 4{
0e2dce80 5 cl = parallel::makeCluster(ncores)
7b13d0c2
BA
6 repeat
7 {
e205f218 8 nb_workers = max( 1, round( length(indices) / nb_series_per_chunk ) )
48108c39 9 indices_workers = lapply(seq_len(nb_workers), function(i) {
7b13d0c2 10 upper_bound = ifelse( i<nb_workers,
e205f218
BA
11 min(nb_series_per_chunk*i,length(indices)), length(indices) )
12 indices[(nb_series_per_chunk*(i-1)+1):upper_bound]
48108c39 13 })
e205f218
BA
14 indices = unlist( parallel::parLapply(cl, indices_workers, function(inds)
15 computeClusters1(inds, getCoefs, K1)) )
0e2dce80 16 if (length(indices_clust) == K1)
7b13d0c2
BA
17 break
18 }
e205f218
BA
19 parallel::stopCluster(cl)
20 if (K2 == 0)
21 return (indices)
22 computeClusters2(indices, K2, getSeries, getSeriesForSynchrones, to_file)
23 vector("integer",0)
5c652979
BA
24}
25
0e2dce80
BA
26# Apply the clustering algorithm (PAM) on a coeffs or distances matrix
27computeClusters1 = function(indices, getCoefs, K1)
e205f218
BA
28{
29 coefs = getCoefs(indices)
30 indices[ cluster::pam(coefs, K1, diss=FALSE)$id.med ]
31}
0e2dce80 32
7b13d0c2 33# Cluster a chunk of series inside one task (~max nb_series_per_chunk)
e205f218 34computeClusters2 = function(indices, K2, getSeries, getSeriesForSynchrones, to_file)
5c652979 35{
e205f218
BA
36 curves = computeSynchrones(indices, getSeries, getSeriesForSynchrones)
37 dists = computeWerDists(curves)
38 medoids = cluster::pam(dists, K2, diss=TRUE)$medoids
39 if (to_file)
5c652979 40 {
e205f218
BA
41 serialize(medoids, synchrones_file)
42 return (NULL)
5c652979 43 }
e205f218 44 medoids
5c652979
BA
45}
46
7b13d0c2 47# Compute the synchrones curves (sum of clusters elements) from a clustering result
e205f218
BA
48computeSynchrones = function(indices, getSeries, getSeriesForSynchrones)
49{
50 #les getSeries(indices) sont les medoides --> init vect nul pour chacun, puis incr avec les
51 #courbes (getSeriesForSynchrones) les plus proches... --> au sens de la norme L2 ?
52 series = getSeries(indices)
53 #...........
54 #sapply(seq_along(inds), colMeans(getSeries(inds[[i]]$indices,inds[[i]]$ids)))
55}
1c6f223e 56
e205f218 57# Compute the WER distance between the synchrones curves (in rows)
7b13d0c2 58computeWerDist = function(curves)
d03c0621 59{
5c652979
BA
60 if (!require("Rwave", quietly=TRUE))
61 stop("Unable to load Rwave library")
7b13d0c2
BA
62 n <- nrow(curves)
63 delta <- ncol(curves)
db6fc17d 64 #TODO: automatic tune of all these parameters ? (for other users)
d03c0621 65 nvoice <- 4
7b13d0c2 66 # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(curves))
d7d55bc1
BA
67 noctave = 13
68 # 4 here represent 2^5 = 32 half-hours ~ 1 day
db6fc17d
BA
69 #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?)
70 scalevector <- 2^(4:(noctave * nvoice) / nvoice) * 2
71 #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1
72 s0=2
73 w0=2*pi
74 scaled=FALSE
75 s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 )
76 totnoct = noctave + as.integer(s0log/nvoice) + 1
77
78 # (normalized) observations node with CWT
79 Xcwt4 <- lapply(seq_len(n), function(i) {
e205f218 80 ts <- scale(ts(curves[i,]), center=TRUE, scale=scaled)
db6fc17d
BA
81 totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0)
82 ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
83 #Normalization
84 sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
85 sqres <- sweep(ts.cwt,MARGIN=2,sqs,'*')
86 sqres / max(Mod(sqres))
87 })
3ccd1e39 88
db6fc17d
BA
89 Xwer_dist <- matrix(0., n, n)
90 fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!)
91 for (i in 1:(n-1))
1c6f223e 92 {
db6fc17d 93 for (j in (i+1):n)
d03c0621 94 {
0e2dce80 95 #TODO: later, compute CWT here (because not enough storage space for 200k series)
db6fc17d
BA
96 # 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C
97 num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
98 WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE)
99 WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
100 wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) )
101 Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2))
102 Xwer_dist[j,i] <- Xwer_dist[i,j]
d03c0621 103 }
1c6f223e 104 }
d03c0621 105 diag(Xwer_dist) <- numeric(n)
c6556868 106 Xwer_dist
1c6f223e 107}