Bug fixed: package OK
[epclust.git] / epclust / R / clustering.R
CommitLineData
3c5a4b08 1#' Two-stage clustering, within one task (see \code{claws()})
4bcfdbee 2#'
3c5a4b08 3#' \code{clusteringTask1()} runs one full stage-1 task, which consists in iterated
3fb6e823 4#' clustering on nb_curves / ntasks energy contributions, computed through
3c5a4b08
BA
5#' discrete wavelets coefficients.
6#' \code{clusteringTask2()} runs a full stage-2 task, which consists in WER distances
7#' computations between medoids (indices) output from stage 1, before applying
8#' the second clustering algorithm on the distances matrix.
4bcfdbee 9#'
4bcfdbee 10#' @param getContribs Function to retrieve contributions from initial series indices:
3fb6e823 11#' \code{getContribs(indices)} outputs a contributions matrix, in columns
4bcfdbee 12#' @inheritParams claws
40f12a2f 13#' @inheritParams computeSynchrones
3c5a4b08
BA
14#' @inheritParams computeWerDists
15#'
16#' @return The indices of the computed (resp. K1 and K2) medoids.
4bcfdbee 17#'
3c5a4b08
BA
18#' @name clustering
19#' @rdname clustering
20#' @aliases clusteringTask1 clusteringTask2
4bcfdbee
BA
21NULL
22
23#' @rdname clustering
24#' @export
282342ba 25clusteringTask1 <- function(indices, getContribs, K1, algoClust1, nb_items_clust,
3fb6e823 26 ncores_clust=3, verbose=FALSE, parll=TRUE)
5c652979 27{
dc86eb0c 28 if (verbose)
e0154a59 29 cat(paste("*** Clustering task 1 on ",length(indices)," series [start]\n", sep=""))
dc86eb0c
BA
30
31 if (length(indices) <= K1)
32 return (indices)
33
492cd9e7 34 if (parll)
7b13d0c2 35 {
282342ba 36 # outfile=="" to see stderr/stdout on terminal
3fb6e823
BA
37 cl <-
38 if (verbose)
39 parallel::makeCluster(ncores_clust, outfile = "")
40 else
41 parallel::makeCluster(ncores_clust)
d9bb53c5 42 parallel::clusterExport(cl, c("getContribs","K1","verbose"), envir=environment())
7b13d0c2 43 }
d9bb53c5 44 # Iterate clustering algorithm 1 until K1 medoids are found
492cd9e7
BA
45 while (length(indices) > K1)
46 {
d9bb53c5 47 # Balance tasks by splitting the indices set - as evenly as possible
282342ba 48 indices_workers <- .splitIndices(indices, nb_items_clust, min_size=K1+1)
e161499b
BA
49 indices <-
50 if (parll)
51 {
52 unlist( parallel::parLapply(cl, indices_workers, function(inds) {
53 require("epclust", quietly=TRUE)
0486fbad 54 inds[ algoClust1(getContribs(inds), K1) ]
e161499b
BA
55 }) )
56 }
57 else
58 {
59 unlist( lapply(indices_workers, function(inds)
0486fbad 60 inds[ algoClust1(getContribs(inds), K1) ]
e161499b
BA
61 ) )
62 }
dc86eb0c
BA
63 if (verbose)
64 {
e0154a59 65 cat(paste("*** Clustering task 1 on ",length(indices)," medoids [iter]\n", sep=""))
dc86eb0c 66 }
492cd9e7
BA
67 }
68 if (parll)
69 parallel::stopCluster(cl)
70
56857861 71 indices #medoids
5c652979
BA
72}
73
4bcfdbee
BA
74#' @rdname clustering
75#' @export
282342ba 76clusteringTask2 <- function(indices, getSeries, K2, algoClust2, nb_series_per_chunk,
3fb6e823 77 smooth_lvl, nvoice, nbytes, endian, ncores_clust=3, verbose=FALSE, parll=TRUE)
5c652979 78{
e161499b 79 if (verbose)
3c5a4b08 80 cat(paste("*** Clustering task 2 on ",length(indices)," medoids\n", sep=""))
d9bb53c5 81
3c5a4b08
BA
82 if (length(indices) <= K2)
83 return (indices)
d9bb53c5 84
3c5a4b08 85 # A) Compute the WER distances (Wavelets Extended coefficient of deteRmination)
282342ba
BA
86 distances <- computeWerDists(indices, getSeries, nb_series_per_chunk,
87 smooth_lvl, nvoice, nbytes, endian, ncores_clust, verbose, parll)
d9bb53c5 88
3c5a4b08 89 # B) Apply clustering algorithm 2 on the WER distances matrix
e161499b 90 if (verbose)
a52836b2 91 cat(paste("*** algoClust2() on ",nrow(distances)," items\n", sep=""))
3c5a4b08 92 indices[ algoClust2(distances,K2) ]
e161499b 93}