'update'
[epclust.git] / epclust / R / clustering.R
CommitLineData
3c5a4b08 1#' Two-stage clustering, within one task (see \code{claws()})
4bcfdbee 2#'
3c5a4b08
BA
3#' \code{clusteringTask1()} runs one full stage-1 task, which consists in iterated
4#' stage 1 clustering on nb_curves / ntasks energy contributions, computed through
5#' discrete wavelets coefficients.
6#' \code{clusteringTask2()} runs a full stage-2 task, which consists in WER distances
7#' computations between medoids (indices) output from stage 1, before applying
8#' the second clustering algorithm on the distances matrix.
4bcfdbee 9#'
4bcfdbee 10#' @param getContribs Function to retrieve contributions from initial series indices:
40f12a2f 11#' \code{getContribs(indices)} outputs a contributions matrix
4bcfdbee 12#' @inheritParams claws
40f12a2f 13#' @inheritParams computeSynchrones
3c5a4b08
BA
14#' @inheritParams computeWerDists
15#'
16#' @return The indices of the computed (resp. K1 and K2) medoids.
4bcfdbee 17#'
3c5a4b08
BA
18#' @name clustering
19#' @rdname clustering
20#' @aliases clusteringTask1 clusteringTask2
4bcfdbee
BA
21NULL
22
23#' @rdname clustering
24#' @export
3c5a4b08 25clusteringTask1 = function(indices, getContribs, K1, algoClust1, nb_items_clust,
37c82bba 26 ncores_clust=1, verbose=FALSE, parll=TRUE)
5c652979 27{
492cd9e7 28 if (parll)
7b13d0c2 29 {
37c82bba 30 cl = parallel::makeCluster(ncores_clust, outfile = "")
d9bb53c5 31 parallel::clusterExport(cl, c("getContribs","K1","verbose"), envir=environment())
7b13d0c2 32 }
d9bb53c5 33 # Iterate clustering algorithm 1 until K1 medoids are found
492cd9e7
BA
34 while (length(indices) > K1)
35 {
d9bb53c5 36 # Balance tasks by splitting the indices set - as evenly as possible
3c5a4b08 37 indices_workers = .splitIndices(indices, nb_items_clust, min_size=K1+1)
0486fbad
BA
38 if (verbose)
39 cat(paste("*** [iterated] Clustering task 1 on ",length(indices)," series\n", sep=""))
e161499b
BA
40 indices <-
41 if (parll)
42 {
43 unlist( parallel::parLapply(cl, indices_workers, function(inds) {
44 require("epclust", quietly=TRUE)
0486fbad 45 inds[ algoClust1(getContribs(inds), K1) ]
e161499b
BA
46 }) )
47 }
48 else
49 {
50 unlist( lapply(indices_workers, function(inds)
0486fbad 51 inds[ algoClust1(getContribs(inds), K1) ]
e161499b
BA
52 ) )
53 }
492cd9e7
BA
54 }
55 if (parll)
56 parallel::stopCluster(cl)
57
56857861 58 indices #medoids
5c652979
BA
59}
60
4bcfdbee
BA
61#' @rdname clustering
62#' @export
40f12a2f
BA
63clusteringTask2 = function(indices, getSeries, K2, algoClust2, nb_series_per_chunk,
64 nvoice, nbytes, endian, ncores_clust=1, verbose=FALSE, parll=TRUE)
5c652979 65{
e161499b 66 if (verbose)
3c5a4b08 67 cat(paste("*** Clustering task 2 on ",length(indices)," medoids\n", sep=""))
d9bb53c5 68
3c5a4b08
BA
69 if (length(indices) <= K2)
70 return (indices)
d9bb53c5 71
3c5a4b08
BA
72 # A) Compute the WER distances (Wavelets Extended coefficient of deteRmination)
73 distances = computeWerDists(indices, getSeries, nb_series_per_chunk,
74 nvoice, nbytes, endian, ncores_clust, verbose, parll)
d9bb53c5 75
3c5a4b08 76 # B) Apply clustering algorithm 2 on the WER distances matrix
e161499b 77 if (verbose)
a52836b2 78 cat(paste("*** algoClust2() on ",nrow(distances)," items\n", sep=""))
3c5a4b08 79 indices[ algoClust2(distances,K2) ]
e161499b 80}