--- /dev/null
+p.boxed
+ | Las piezas pueden fusionarse y también dividirse en
+ | ciertas circunstancias.
+
+p.
+ Ajedrez Fusión se juega como el juego habitual,
+ con las siguientes excepciones:
+
+h3 Fusión
+
+p.
+ Una sola pieza no real (Alfil, Caballo o Torre) se puede combinar con
+ otra pieza del mismo lado (incluido el Rey) moviéndose a su casilla.
+
+p La pieza combinada evoluciona como una u otra de las piezas unidas:
+ul
+ li Rey + Alfil = Pontífice
+ li Rey + Torre = Rey Dragón
+ li Rey + Caballo = Rey Caballero
+ li Alfil + Torre = Dama
+ li Alfil + Caballo = Paladín
+ li Torre + Caballo = Mariscal
+
+p Una pieza no se puede combinar con
+ul
+ li otra pieza del mismo tipo,
+ li una pieza que pertenece al oponente,
+ li una pieza compuesta.
+
+p.
+ Un Rey no puede moverse para combinar con una pieza, pero una
+ pieza puede realizar el desplazamiento que lleva a la fusión.
+
+figure.diagram-container
+ .diagram.diag12
+ | fen:r1bqkbnr/pp1ppppp/2n5/2p5/4P3/5N2/PPPPBPPP/RNBQK2R:
+ .diagram.diag22
+ | fen:r1bqkbm1/pp1ppppp/2n5/2p5/4P3/5D2/PPPP1PPP/RNBQK2R:
+ figcaption Antes y después de los movimientos BxNf3 y RxNg8.
+
+h3 Fisión
+
+p.
+ Una pieza compuesta no atacada puede partirse moviendo uno de sus
+ componentes, según su tipo de movimiento, a un cuadrado vacío.
+ul
+ li.
+ Una Torre que se separa de una pieza debe alejarse mediante
+ un movimiento de Torre.
+ li.
+ Un Alfil que se separa de una pieza debe alejarse después de un
+ movimiento de Alfil.
+ li.
+ Un Caballo que se separa de una pieza debe
+ alejarse después de un movimiento de Caballo.
+ li.
+ Un Rey que se separa de una pieza debe alejarse mediante
+ un movimiento de Rey.
+p La pieza compuesta se reemplaza por el componente no inicial.
+
+h3 Otros detalles
+
+p.
+ Cualquier pieza que haya participado en una fisión o fusión
+ ya no puede enrocarse.
+
+p Los peones solo se promueven a Torre, Alfil o Caballo.
+
+p.
+ El objetivo es matar a la actual pieza real opuesta, esta
+ puede ser un Rey, Pontífice, Rey Dragón o Rey Caballo.
+
+p.
+ Una pieza real que se mueva más allá de un cuadrado no debe pasar
+ plazas atacadas. Respecto al Rey Caballero, un movimiento de Caballo
+ se entiende como un primer paso ortogonal antes de un giro diagonal,
+ o viceversa. Si los dos espacios que se pueden cruzar para alcanzar
+ una casilla está bajo control, no puede ir a esa casilla.
+ Sin embargo, eso no le impide dar jaque o atacar una pieza.
+
+figure.diagram-container
+ .diagram
+ | fen:r3br2/c2p4/1pd2pqp/p1B5/1D1P1QP1/8/PPP1P2P/2RG2N1 c8:
+
+p.
+ En el diagrama anterior, el único movimiento que no se separa del Rey
+ Caballero es hacia c8. De hecho, a6 y b6 son atacados.
+ b8 también, pero no b7.
+
+h3 Más información
+
+p
+ | Ver la
+ a(href="https://www.chessvariants.com/other.dir/fusion.html")
+ | página chessvariants
+ | .
+
+p Inventor: Fergus Duniho (1999)
--- /dev/null
+import { ChessRules, Move, PiPo } from "@/base_rules";
+
+export class FusionRules extends ChessRules {
+
+ static get PawnSpecs() {
+ return (
+ Object.assign(
+ { promotions: [V.ROOK, V.KNIGHT, V.BISHOP] },
+ ChessRules.PawnSpecs
+ )
+ );
+ }
+
+ static IsGoodPosition(position) {
+ if (position.length == 0) return false;
+ const rows = position.split("/");
+ if (rows.length != V.size.x) return false;
+ let kings = { "k": 0, "K": 0 };
+ for (let row of rows) {
+ let sumElts = 0;
+ for (let i = 0; i < row.length; i++) {
+ if (['K', 'F', 'G', 'C'].includes(row[i])) kings['K']++;
+ else if (['k', 'f', 'g', 'c'].includes(row[i])) kings['k']++;
+ if (V.PIECES.includes(row[i].toLowerCase())) sumElts++;
+ else {
+ const num = parseInt(row[i], 10);
+ if (isNaN(num) || num <= 0) return false;
+ sumElts += num;
+ }
+ }
+ if (sumElts != V.size.y) return false;
+ }
+ if (Object.values(kings).some(v => v != 1)) return false;
+ return true;
+ }
+
+ scanKings(fen) {
+ this.kingPos = { w: [-1, -1], b: [-1, -1] };
+ const fenRows = V.ParseFen(fen).position.split("/");
+ for (let i = 0; i < fenRows.length; i++) {
+ let k = 0;
+ for (let j = 0; j < fenRows[i].length; j++) {
+ const ch_ij = fenRows[i].charAt(j);
+ if (['k', 'f', 'g', 'c'].includes(ch_ij))
+ this.kingPos["b"] = [i, k];
+ else if (['K', 'F', 'G', 'C'].includes(ch_ij))
+ this.kingPos["w"] = [i, k];
+ else {
+ const num = parseInt(fenRows[i].charAt(j), 10);
+ if (!isNaN(num)) k += num - 1;
+ }
+ k++;
+ }
+ }
+ }
+
+ canTake([x1, y1], [x2, y2]) {
+ if (this.getColor(x1, y1) !== this.getColor(x2, y2)) return true;
+ const p1 = this.getPiece(x1, y1);
+ const p2 = this.getPiece(x2, y2);
+ return (
+ p1 != p2 &&
+ [V.ROOK, V.KNIGHT, V.BISHOP].includes(p1) &&
+ [V.KING, V.ROOK, V.KNIGHT, V.BISHOP].includes(p2)
+ );
+ }
+
+ getPpath(b) {
+ if ([V.BN, V.RN, V.KB, V.KR, V.KN].includes(b[1])) return "Fusion/" + b;
+ return b;
+ }
+
+ // Three new pieces: rook+knight, bishop+knight and queen+knight
+ static get RN() {
+ // Marshall
+ return 'm';
+ }
+ static get BN() {
+ // Paladin
+ return 'd';
+ }
+ static get KB() {
+ // Pontiff
+ return 'f';
+ }
+ static get KR() {
+ // Dragon King
+ return 'g';
+ }
+ static get KN() {
+ // Cavalier King
+ return 'c';
+ }
+
+ static get PIECES() {
+ return ChessRules.PIECES.concat([V.RN, V.BN, V.KB, V.KR, V.KN]);
+ }
+
+ static Fusion(p1, p2) {
+ if (p2 == V.KING) {
+ switch (p1) {
+ case V.ROOK: return V.KR;
+ case V.BISHOP: return V.KB;
+ case V.KNIGHT: return V.KN;
+ }
+ }
+ if ([p1, p2].includes(V.KNIGHT)) {
+ if ([p1, p2].includes(V.ROOK)) return V.RN;
+ return V.BN;
+ }
+ // Only remaining combination is rook + bishop = queen
+ return V.QUEEN;
+ }
+
+ getPotentialMovesFrom(sq) {
+ let moves = [];
+ const piece = this.getPiece(sq[0], sq[1]);
+ switch (piece) {
+ case V.RN:
+ moves =
+ super.getPotentialRookMoves(sq).concat(
+ super.getPotentialKnightMoves(sq)).concat(
+ this.getFissionMoves(sq));
+ break;
+ case V.BN:
+ moves =
+ super.getPotentialBishopMoves(sq).concat(
+ super.getPotentialKnightMoves(sq)).concat(
+ this.getFissionMoves(sq));
+ break;
+ case V.KN:
+ moves =
+ super.getPotentialKingMoves(sq).concat(
+ this.getPotentialKingAsKnightMoves(sq)).concat(
+ this.getFissionMoves(sq));
+ break;
+ case V.KB:
+ moves =
+ super.getPotentialKingMoves(sq).concat(
+ this.getPotentialKingAsBishopMoves(sq)).concat(
+ this.getFissionMoves(sq));
+ break;
+ case V.KR:
+ moves =
+ super.getPotentialKingMoves(sq).concat(
+ this.getPotentialKingAsRookMoves(sq)).concat(
+ this.getFissionMoves(sq));
+ break;
+ case V.QUEEN:
+ moves =
+ super.getPotentialQueenMoves(sq).concat(this.getFissionMoves(sq));
+ break;
+ default:
+ moves = super.getPotentialMovesFrom(sq);
+ break;
+ }
+ moves.forEach(m => {
+ if (
+ m.vanish.length == 2 &&
+ m.appear.length == 1 &&
+ m.vanish[0].c == m.vanish[1].c
+ ) {
+ // Augment pieces abilities in case of self-captures
+ m.appear[0].p = V.Fusion(piece, m.vanish[1].p);
+ }
+ });
+ return moves;
+ }
+
+ getSlideNJumpMoves_fission([x, y], moving, staying, steps, oneStep) {
+ let moves = [];
+ const c = this.getColor(x, y);
+ outerLoop: for (let step of steps) {
+ let i = x + step[0];
+ let j = y + step[1];
+ while (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) {
+ moves.push(
+ new Move({
+ appear: [
+ new PiPo({ x: i, y: j, c: c, p: moving }),
+ new PiPo({ x: x, y: y, c: c, p: staying }),
+ ],
+ vanish: [
+ new PiPo({ x: x, y: y, c: c, p: this.getPiece(x, y) })
+ ]
+ })
+ );
+ if (!!oneStep) continue outerLoop;
+ i += step[0];
+ j += step[1];
+ }
+ }
+ return moves;
+ }
+
+ getFissionMoves(sq) {
+ // Square attacked by opponent?
+ const color = this.getColor(sq[0], sq[1]);
+ const oppCol = V.GetOppCol(color);
+ if (this.isAttacked(sq, oppCol)) return [];
+ // Ok, fission a priori valid
+ const kSteps = V.steps[V.BISHOP].concat(V.steps[V.BISHOP]);
+ switch (this.getPiece(sq[0], sq[1])) {
+ case V.BN:
+ return (
+ this.getSlideNJumpMoves_fission(
+ sq, V.BISHOP, V.KNIGHT, V.steps[V.BISHOP])
+ .concat(this.getSlideNJumpMoves_fission(
+ sq, V.KNIGHT, V.BISHOP, V.steps[V.KNIGHT], "oneStep"))
+ );
+ case V.RN:
+ return (
+ this.getSlideNJumpMoves_fission(
+ sq, V.ROOK, V.KNIGHT, V.steps[V.ROOK])
+ .concat(this.getSlideNJumpMoves_fission(
+ sq, V.KNIGHT, V.ROOK, V.steps[V.KNIGHT], "oneStep"))
+ );
+ case V.KN:
+ return (
+ this.getSlideNJumpMoves_fission(sq, V.KING, V.KNIGHT, kSteps)
+ .concat(this.getSlideNJumpMoves_fission(
+ sq, V.KNIGHT, V.KING, V.steps[V.KNIGHT], "oneStep"))
+ );
+ case V.KB:
+ return (
+ this.getSlideNJumpMoves_fission(sq, V.KING, V.BISHOP, kSteps)
+ .concat(this.getSlideNJumpMoves_fission(
+ sq, V.BISHOP, V.KING, V.steps[V.BISHOP]))
+ );
+ case V.KR:
+ return (
+ this.getSlideNJumpMoves_fission(sq, V.KING, V.ROOK, kSteps)
+ .concat(this.getSlideNJumpMoves_fission(
+ sq, V.ROOK, V.KING, V.steps[V.ROOK]))
+ );
+ case V.QUEEN:
+ return (
+ this.getSlideNJumpMoves_fission(
+ sq, V.BISHOP, V.ROOK, V.steps[V.BISHOP])
+ .concat(this.getSlideNJumpMoves_fission(
+ sq, V.ROOK, V.BISHOP, V.steps[V.ROOK]))
+ );
+ }
+ }
+
+ intermediateSquaresFromKnightStep(step) {
+ if (step[0] == 2) return [ [1, 0], [1, step[1]] ];
+ if (step[0] == -2) return [ [-1, 0], [-1, step[1]] ];
+ if (step[1] == 2) return [ [0, 1], [step[1], 1] ];
+ // step[1] == -2:
+ return [ [0, -1], [step[1], -1] ];
+ }
+
+ getPotentialKingAsKnightMoves([x, y]) {
+ const oppCol = V.GetOppCol(this.turn);
+ let moves = [];
+ let intermediateOk = {};
+ for (let s of V.steps[V.KNIGHT]) {
+ const [i, j] = [x + s[0], y + s[1]];
+ if (!V.OnBoard(i, j) || this.board[i][j] != V.EMPTY) continue;
+ const iSq = this.intermediateSquaresFromKnightStep(s);
+ let moveOk = false;
+ for (let sq of iSq) {
+ const key = sq[0] + "_" + sq[1];
+ if (Object.keys(intermediateOk).includes(key)) {
+ if (intermediateOk[key]) moveOk = true;
+ }
+ else {
+ moveOk = !this.isAttacked([x + sq[0], y + sq[1]], oppCol);
+ intermediateOk[key] = moveOk;
+ }
+ if (moveOk) break;
+ }
+ if (moveOk) moves.push(this.getBasicMove([x, y], [i, j]));
+ }
+ return moves;
+ }
+
+ getPotentialKingMovesAsSlider([x, y], slider) {
+ const oppCol = V.GetOppCol(this.turn);
+ let moves = [];
+ for (let s of V.steps[slider]) {
+ let [i, j] = [x + s[0], y + s[1]];
+ if (
+ !V.OnBoard(i, j) ||
+ this.board[i][j] != V.EMPTY ||
+ this.isAttacked([i, j], oppCol)
+ ) {
+ continue;
+ }
+ i += s[0];
+ j += s[1];
+ while (
+ V.OnBoard(i, j) &&
+ this.board[i][j] == V.EMPTY &&
+ // TODO: this test will be done twice (also in filterValid())
+ !this.isAttacked([i, j], oppCol)
+ ) {
+ moves.push(this.getBasicMove([x, y], [i, j]));
+ i += s[0];
+ j += s[1];
+ }
+ }
+ return moves;
+ }
+
+ getPotentialKingAsBishopMoves(sq) {
+ return this.getPotentialKingMovesAsSlider(sq, V.BISHOP);
+ }
+
+ getPotentialKingAsRookMoves(sq) {
+ return this.getPotentialKingMovesAsSlider(sq, V.ROOK);
+ }
+
+ isAttacked(sq, color) {
+ return (
+ super.isAttacked(sq, color) ||
+ this.isAttackedByBN(sq, color) ||
+ this.isAttackedByRN(sq, color) ||
+ this.isAttackedByKN(sq, color) ||
+ this.isAttackedByKB(sq, color) ||
+ this.isAttackedByKR(sq, color)
+ );
+ }
+
+ isAttackedByBN(sq, color) {
+ return (
+ this.isAttackedBySlideNJump(sq, color, V.BN, V.steps[V.BISHOP]) ||
+ this.isAttackedBySlideNJump(
+ sq, color, V.BN, V.steps[V.KNIGHT], "oneStep")
+ );
+ }
+
+ isAttackedByRN(sq, color) {
+ return (
+ this.isAttackedBySlideNJump(sq, color, V.RN, V.steps[V.ROOK]) ||
+ this.isAttackedBySlideNJump(
+ sq, color, V.RN, V.steps[V.KNIGHT], "oneStep")
+ );
+ }
+
+ isAttackedByKN(sq, color) {
+ const steps = V.steps[V.ROOK].concat(V.steps[V.BISHOP]);
+ return (
+ this.isAttackedBySlideNJump(sq, color, V.KN, steps, "oneStep") ||
+ this.isAttackedBySlideNJump(
+ sq, color, V.KN, V.steps[V.KNIGHT], "oneStep")
+ );
+ }
+
+ isAttackedByKB(sq, color) {
+ const steps = V.steps[V.ROOK].concat(V.steps[V.BISHOP]);
+ return (
+ this.isAttackedBySlideNJump(sq, color, V.KB, steps, "oneStep") ||
+ this.isAttackedBySlideNJump(sq, color, V.KB, V.steps[V.BISHOP])
+ );
+ }
+
+ isAttackedByKR(sq, color) {
+ const steps = V.steps[V.ROOK].concat(V.steps[V.BISHOP]);
+ return (
+ this.isAttackedBySlideNJump(sq, color, V.KR, steps, "oneStep") ||
+ this.isAttackedBySlideNJump(sq, color, V.KR, V.steps[V.ROOK])
+ );
+ }
+
+ updateCastleFlags(move, piece) {
+ const c = V.GetOppCol(this.turn);
+ const firstRank = (c == "w" ? V.size.x - 1 : 0);
+ const oppCol = this.turn;
+ const oppFirstRank = V.size.x - 1 - firstRank;
+ if (piece == V.KING)
+ this.castleFlags[c] = [V.size.y, V.size.y];
+ else if (
+ move.start.x == firstRank && //our rook moves?
+ this.castleFlags[c].includes(move.start.y)
+ ) {
+ const flagIdx = (move.start.y == this.castleFlags[c][0] ? 0 : 1);
+ this.castleFlags[c][flagIdx] = V.size.y;
+ }
+ // Check move endpoint: if my king or any rook position, flags off
+ if (move.end.x == this.kingPos[c][0] && move.end.y == this.kingPos[c][1])
+ this.castleFlags[c] = [V.size.y, V.size.y];
+ else if (
+ move.end.x == firstRank &&
+ this.castleFlags[c].includes(move.end.y)
+ ) {
+ const flagIdx = (move.end.y == this.castleFlags[c][0] ? 0 : 1);
+ this.castleFlags[c][flagIdx] = V.size.y;
+ }
+ else if (
+ move.end.x == oppFirstRank &&
+ this.castleFlags[oppCol].includes(move.end.y)
+ ) {
+ const flagIdx = (move.end.y == this.castleFlags[oppCol][0] ? 0 : 1);
+ this.castleFlags[oppCol][flagIdx] = V.size.y;
+ }
+ }
+
+ postPlay(move) {
+ const c = V.GetOppCol(this.turn);
+ const piece = move.appear[0].p;
+ if ([V.KING, V.KN, V.KB, V.KR].includes(piece))
+ this.kingPos[c] = [move.appear[0].x, move.appear[0].y];
+ this.updateCastleFlags(move, piece);
+ }
+
+ postUndo(move) {
+ const c = this.getColor(move.start.x, move.start.y);
+ if ([V.KING, V.KN, V.KB, V.KR].includes(move.appear[0].p))
+ this.kingPos[c] = [move.start.x, move.start.y];
+ }
+
+ static get VALUES() {
+ // Values such that sum of values = value of sum
+ return Object.assign(
+ { m: 8, d: 6, f: 1003, g: 1005, c: 1003 },
+ ChessRules.VALUES
+ );
+ }
+
+ getNotation(move) {
+ if (move.appear.length == 2 && move.vanish.length == 1) {
+ // Fission (because no capture in this case)
+ return (
+ move.appear[0].p.toUpperCase() + V.CoordsToSquare(move.end) +
+ "/f:" + move.appear[1].p.toUpperCase() + V.CoordsToSquare(move.start)
+ );
+ }
+ let notation = super.getNotation(move);
+ if (move.vanish[0].p != V.PAWN && move.appear[0].p != move.vanish[0].p)
+ // Fusion (not from a pawn: handled in ChessRules)
+ notation += "=" + move.appear[0].p.toUpperCase();
+ return notation;
+ }
+
+};