a47b853f439f283a1ee57e419c87afbe17eb4c0f
1 // (Orthodox) Chess rules are defined in ChessRules class.
2 // Variants generally inherit from it, and modify some parts.
4 import { ArrayFun
} from "@/utils/array";
5 import { randInt
, shuffle
} from "@/utils/alea";
7 // class "PiPo": Piece + Position
8 export const PiPo
= class PiPo
{
9 // o: {piece[p], color[c], posX[x], posY[y]}
18 export const Move
= class Move
{
19 // o: {appear, vanish, [start,] [end,]}
20 // appear,vanish = arrays of PiPo
21 // start,end = coordinates to apply to trigger move visually (think castle)
23 this.appear
= o
.appear
;
24 this.vanish
= o
.vanish
;
25 this.start
= o
.start
? o
.start : { x: o
.vanish
[0].x
, y: o
.vanish
[0].y
};
26 this.end
= o
.end
? o
.end : { x: o
.appear
[0].x
, y: o
.appear
[0].y
};
30 // NOTE: x coords = top to bottom; y = left to right (from white player perspective)
31 export const ChessRules
= class ChessRules
{
35 // Some variants don't have flags:
36 static get HasFlags() {
40 // Some variants don't have en-passant
41 static get HasEnpassant() {
45 // Some variants cannot have analyse mode
46 static get CanAnalyze() {
49 // Patch: issues with javascript OOP, objects can't access static fields.
54 // Some variants show incomplete information,
55 // and thus show only a partial moves list or no list at all.
56 static get ShowMoves() {
63 // Turn "wb" into "B" (for FEN)
65 return b
[0] == "w" ? b
[1].toUpperCase() : b
[1];
68 // Turn "p" into "bp" (for board)
70 return f
.charCodeAt() <= 90 ? "w" + f
.toLowerCase() : "b" + f
;
73 // Check if FEN describe a board situation correctly
74 static IsGoodFen(fen
) {
75 const fenParsed
= V
.ParseFen(fen
);
77 if (!V
.IsGoodPosition(fenParsed
.position
)) return false;
79 if (!fenParsed
.turn
|| !V
.IsGoodTurn(fenParsed
.turn
)) return false;
80 // 3) Check moves count
81 if (!fenParsed
.movesCount
|| !(parseInt(fenParsed
.movesCount
) >= 0))
84 if (V
.HasFlags
&& (!fenParsed
.flags
|| !V
.IsGoodFlags(fenParsed
.flags
)))
89 (!fenParsed
.enpassant
|| !V
.IsGoodEnpassant(fenParsed
.enpassant
))
96 // Is position part of the FEN a priori correct?
97 static IsGoodPosition(position
) {
98 if (position
.length
== 0) return false;
99 const rows
= position
.split("/");
100 if (rows
.length
!= V
.size
.x
) return false;
102 for (let row
of rows
) {
104 for (let i
= 0; i
< row
.length
; i
++) {
105 if (['K','k'].includes(row
[i
]))
106 kings
[row
[i
]] = true;
107 if (V
.PIECES
.includes(row
[i
].toLowerCase())) sumElts
++;
109 const num
= parseInt(row
[i
]);
110 if (isNaN(num
)) return false;
114 if (sumElts
!= V
.size
.y
) return false;
116 // Both kings should be on board:
117 if (Object
.keys(kings
).length
!= 2)
123 static IsGoodTurn(turn
) {
124 return ["w", "b"].includes(turn
);
128 static IsGoodFlags(flags
) {
129 return !!flags
.match(/^[01]{4,4}$/);
132 static IsGoodEnpassant(enpassant
) {
133 if (enpassant
!= "-") {
134 const ep
= V
.SquareToCoords(enpassant
);
135 if (isNaN(ep
.x
) || !V
.OnBoard(ep
)) return false;
140 // 3 --> d (column number to letter)
141 static CoordToColumn(colnum
) {
142 return String
.fromCharCode(97 + colnum
);
145 // d --> 3 (column letter to number)
146 static ColumnToCoord(column
) {
147 return column
.charCodeAt(0) - 97;
151 static SquareToCoords(sq
) {
153 // NOTE: column is always one char => max 26 columns
154 // row is counted from black side => subtraction
155 x: V
.size
.x
- parseInt(sq
.substr(1)),
156 y: sq
[0].charCodeAt() - 97
161 static CoordsToSquare(coords
) {
162 return V
.CoordToColumn(coords
.y
) + (V
.size
.x
- coords
.x
);
167 return b
; //usual pieces in pieces/ folder
170 // Aggregates flags into one object
172 return this.castleFlags
;
176 disaggregateFlags(flags
) {
177 this.castleFlags
= flags
;
180 // En-passant square, if any
181 getEpSquare(moveOrSquare
) {
182 if (!moveOrSquare
) return undefined;
183 if (typeof moveOrSquare
=== "string") {
184 const square
= moveOrSquare
;
185 if (square
== "-") return undefined;
186 return V
.SquareToCoords(square
);
188 // Argument is a move:
189 const move = moveOrSquare
;
190 const [sx
, sy
, ex
] = [move.start
.x
, move.start
.y
, move.end
.x
];
191 // NOTE: next conditions are first for Atomic, and last for Checkered
193 move.appear
.length
> 0 &&
194 Math
.abs(sx
- ex
) == 2 &&
195 move.appear
[0].p
== V
.PAWN
&&
196 ["w", "b"].includes(move.appear
[0].c
)
203 return undefined; //default
206 // Can thing on square1 take thing on square2
207 canTake([x1
, y1
], [x2
, y2
]) {
208 return this.getColor(x1
, y1
) !== this.getColor(x2
, y2
);
211 // Is (x,y) on the chessboard?
212 static OnBoard(x
, y
) {
213 return x
>= 0 && x
< V
.size
.x
&& y
>= 0 && y
< V
.size
.y
;
216 // Used in interface: 'side' arg == player color
217 canIplay(side
, [x
, y
]) {
218 return this.turn
== side
&& this.getColor(x
, y
) == side
;
221 // On which squares is color under check ? (for interface)
222 getCheckSquares(color
) {
223 return this.isAttacked(this.kingPos
[color
], [V
.GetOppCol(color
)])
224 ? [JSON
.parse(JSON
.stringify(this.kingPos
[color
]))] //need to duplicate!
231 // Setup the initial random (assymetric) position
232 static GenRandInitFen() {
233 let pieces
= { w: new Array(8), b: new Array(8) };
234 // Shuffle pieces on first and last rank
235 for (let c
of ["w", "b"]) {
236 let positions
= ArrayFun
.range(8);
238 // Get random squares for bishops
239 let randIndex
= 2 * randInt(4);
240 const bishop1Pos
= positions
[randIndex
];
241 // The second bishop must be on a square of different color
242 let randIndex_tmp
= 2 * randInt(4) + 1;
243 const bishop2Pos
= positions
[randIndex_tmp
];
244 // Remove chosen squares
245 positions
.splice(Math
.max(randIndex
, randIndex_tmp
), 1);
246 positions
.splice(Math
.min(randIndex
, randIndex_tmp
), 1);
248 // Get random squares for knights
249 randIndex
= randInt(6);
250 const knight1Pos
= positions
[randIndex
];
251 positions
.splice(randIndex
, 1);
252 randIndex
= randInt(5);
253 const knight2Pos
= positions
[randIndex
];
254 positions
.splice(randIndex
, 1);
256 // Get random square for queen
257 randIndex
= randInt(4);
258 const queenPos
= positions
[randIndex
];
259 positions
.splice(randIndex
, 1);
261 // Rooks and king positions are now fixed,
262 // because of the ordering rook-king-rook
263 const rook1Pos
= positions
[0];
264 const kingPos
= positions
[1];
265 const rook2Pos
= positions
[2];
267 // Finally put the shuffled pieces in the board array
268 pieces
[c
][rook1Pos
] = "r";
269 pieces
[c
][knight1Pos
] = "n";
270 pieces
[c
][bishop1Pos
] = "b";
271 pieces
[c
][queenPos
] = "q";
272 pieces
[c
][kingPos
] = "k";
273 pieces
[c
][bishop2Pos
] = "b";
274 pieces
[c
][knight2Pos
] = "n";
275 pieces
[c
][rook2Pos
] = "r";
278 pieces
["b"].join("") +
279 "/pppppppp/8/8/8/8/PPPPPPPP/" +
280 pieces
["w"].join("").toUpperCase() +
282 ); //add turn + flags + enpassant
285 // "Parse" FEN: just return untransformed string data
286 static ParseFen(fen
) {
287 const fenParts
= fen
.split(" ");
289 position: fenParts
[0],
291 movesCount: fenParts
[2]
294 if (V
.HasFlags
) Object
.assign(res
, { flags: fenParts
[nextIdx
++] });
295 if (V
.HasEnpassant
) Object
.assign(res
, { enpassant: fenParts
[nextIdx
] });
299 // Return current fen (game state)
307 (V
.HasFlags
? " " + this.getFlagsFen() : "") +
308 (V
.HasEnpassant
? " " + this.getEnpassantFen() : "")
312 // Position part of the FEN string
315 for (let i
= 0; i
< V
.size
.x
; i
++) {
317 for (let j
= 0; j
< V
.size
.y
; j
++) {
318 if (this.board
[i
][j
] == V
.EMPTY
) emptyCount
++;
320 if (emptyCount
> 0) {
321 // Add empty squares in-between
322 position
+= emptyCount
;
325 position
+= V
.board2fen(this.board
[i
][j
]);
328 if (emptyCount
> 0) {
330 position
+= emptyCount
;
332 if (i
< V
.size
.x
- 1) position
+= "/"; //separate rows
341 // Flags part of the FEN string
344 // Add castling flags
345 for (let i
of ["w", "b"]) {
346 for (let j
= 0; j
< 2; j
++) flags
+= this.castleFlags
[i
][j
] ? "1" : "0";
351 // Enpassant part of the FEN string
353 const L
= this.epSquares
.length
;
354 if (!this.epSquares
[L
- 1]) return "-"; //no en-passant
355 return V
.CoordsToSquare(this.epSquares
[L
- 1]);
358 // Turn position fen into double array ["wb","wp","bk",...]
359 static GetBoard(position
) {
360 const rows
= position
.split("/");
361 let board
= ArrayFun
.init(V
.size
.x
, V
.size
.y
, "");
362 for (let i
= 0; i
< rows
.length
; i
++) {
364 for (let indexInRow
= 0; indexInRow
< rows
[i
].length
; indexInRow
++) {
365 const character
= rows
[i
][indexInRow
];
366 const num
= parseInt(character
);
367 // If num is a number, just shift j:
368 if (!isNaN(num
)) j
+= num
;
369 // Else: something at position i,j
370 else board
[i
][j
++] = V
.fen2board(character
);
376 // Extract (relevant) flags from fen
378 // white a-castle, h-castle, black a-castle, h-castle
379 this.castleFlags
= { w: [true, true], b: [true, true] };
380 if (!fenflags
) return;
381 for (let i
= 0; i
< 4; i
++)
382 this.castleFlags
[i
< 2 ? "w" : "b"][i
% 2] = fenflags
.charAt(i
) == "1";
389 // In printDiagram() fen isn't supply because only getPpath() is used
394 // Fen string fully describes the game state
396 const fenParsed
= V
.ParseFen(fen
);
397 this.board
= V
.GetBoard(fenParsed
.position
);
398 this.turn
= fenParsed
.turn
[0]; //[0] to work with MarseilleRules
399 this.movesCount
= parseInt(fenParsed
.movesCount
);
400 this.setOtherVariables(fen
);
403 // Scan board for kings and rooks positions
404 scanKingsRooks(fen
) {
405 this.INIT_COL_KING
= { w: -1, b: -1 };
406 this.INIT_COL_ROOK
= { w: [-1, -1], b: [-1, -1] };
407 this.kingPos
= { w: [-1, -1], b: [-1, -1] }; //squares of white and black king
408 const fenRows
= V
.ParseFen(fen
).position
.split("/");
409 for (let i
= 0; i
< fenRows
.length
; i
++) {
410 let k
= 0; //column index on board
411 for (let j
= 0; j
< fenRows
[i
].length
; j
++) {
412 switch (fenRows
[i
].charAt(j
)) {
414 this.kingPos
["b"] = [i
, k
];
415 this.INIT_COL_KING
["b"] = k
;
418 this.kingPos
["w"] = [i
, k
];
419 this.INIT_COL_KING
["w"] = k
;
422 if (this.INIT_COL_ROOK
["b"][0] < 0) this.INIT_COL_ROOK
["b"][0] = k
;
423 else this.INIT_COL_ROOK
["b"][1] = k
;
426 if (this.INIT_COL_ROOK
["w"][0] < 0) this.INIT_COL_ROOK
["w"][0] = k
;
427 else this.INIT_COL_ROOK
["w"][1] = k
;
430 const num
= parseInt(fenRows
[i
].charAt(j
));
431 if (!isNaN(num
)) k
+= num
- 1;
439 // Some additional variables from FEN (variant dependant)
440 setOtherVariables(fen
) {
441 // Set flags and enpassant:
442 const parsedFen
= V
.ParseFen(fen
);
443 if (V
.HasFlags
) this.setFlags(parsedFen
.flags
);
444 if (V
.HasEnpassant
) {
446 parsedFen
.enpassant
!= "-"
447 ? this.getEpSquare(parsedFen
.enpassant
)
449 this.epSquares
= [epSq
];
451 // Search for king and rooks positions:
452 this.scanKingsRooks(fen
);
455 /////////////////////
459 return { x: 8, y: 8 };
462 // Color of thing on suqare (i,j). 'undefined' if square is empty
464 return this.board
[i
][j
].charAt(0);
467 // Piece type on square (i,j). 'undefined' if square is empty
469 return this.board
[i
][j
].charAt(1);
472 // Get opponent color
473 static GetOppCol(color
) {
474 return color
== "w" ? "b" : "w";
477 // Pieces codes (for a clearer code)
484 static get KNIGHT() {
487 static get BISHOP() {
498 static get PIECES() {
499 return [V
.PAWN
, V
.ROOK
, V
.KNIGHT
, V
.BISHOP
, V
.QUEEN
, V
.KING
];
507 // Some pieces movements
538 // All possible moves from selected square (assumption: color is OK)
539 getPotentialMovesFrom([x
, y
]) {
540 switch (this.getPiece(x
, y
)) {
542 return this.getPotentialPawnMoves([x
, y
]);
544 return this.getPotentialRookMoves([x
, y
]);
546 return this.getPotentialKnightMoves([x
, y
]);
548 return this.getPotentialBishopMoves([x
, y
]);
550 return this.getPotentialQueenMoves([x
, y
]);
552 return this.getPotentialKingMoves([x
, y
]);
554 return []; //never reached
557 // Build a regular move from its initial and destination squares.
558 // tr: transformation
559 getBasicMove([sx
, sy
], [ex
, ey
], tr
) {
565 c: tr
? tr
.c : this.getColor(sx
, sy
),
566 p: tr
? tr
.p : this.getPiece(sx
, sy
)
573 c: this.getColor(sx
, sy
),
574 p: this.getPiece(sx
, sy
)
579 // The opponent piece disappears if we take it
580 if (this.board
[ex
][ey
] != V
.EMPTY
) {
585 c: this.getColor(ex
, ey
),
586 p: this.getPiece(ex
, ey
)
593 // Generic method to find possible moves of non-pawn pieces:
594 // "sliding or jumping"
595 getSlideNJumpMoves([x
, y
], steps
, oneStep
) {
597 outerLoop: for (let step
of steps
) {
600 while (V
.OnBoard(i
, j
) && this.board
[i
][j
] == V
.EMPTY
) {
601 moves
.push(this.getBasicMove([x
, y
], [i
, j
]));
602 if (oneStep
!== undefined) continue outerLoop
;
606 if (V
.OnBoard(i
, j
) && this.canTake([x
, y
], [i
, j
]))
607 moves
.push(this.getBasicMove([x
, y
], [i
, j
]));
612 // What are the pawn moves from square x,y ?
613 getPotentialPawnMoves([x
, y
]) {
614 const color
= this.turn
;
616 const [sizeX
, sizeY
] = [V
.size
.x
, V
.size
.y
];
617 const shiftX
= color
== "w" ? -1 : 1;
618 const firstRank
= color
== "w" ? sizeX
- 1 : 0;
619 const startRank
= color
== "w" ? sizeX
- 2 : 1;
620 const lastRank
= color
== "w" ? 0 : sizeX
- 1;
621 const pawnColor
= this.getColor(x
, y
); //can be different for checkered
623 // NOTE: next condition is generally true (no pawn on last rank)
624 if (x
+ shiftX
>= 0 && x
+ shiftX
< sizeX
) {
626 x
+ shiftX
== lastRank
627 ? [V
.ROOK
, V
.KNIGHT
, V
.BISHOP
, V
.QUEEN
]
629 // One square forward
630 if (this.board
[x
+ shiftX
][y
] == V
.EMPTY
) {
631 for (let piece
of finalPieces
) {
633 this.getBasicMove([x
, y
], [x
+ shiftX
, y
], {
639 // Next condition because pawns on 1st rank can generally jump
641 [startRank
, firstRank
].includes(x
) &&
642 this.board
[x
+ 2 * shiftX
][y
] == V
.EMPTY
645 moves
.push(this.getBasicMove([x
, y
], [x
+ 2 * shiftX
, y
]));
649 for (let shiftY
of [-1, 1]) {
652 y
+ shiftY
< sizeY
&&
653 this.board
[x
+ shiftX
][y
+ shiftY
] != V
.EMPTY
&&
654 this.canTake([x
, y
], [x
+ shiftX
, y
+ shiftY
])
656 for (let piece
of finalPieces
) {
658 this.getBasicMove([x
, y
], [x
+ shiftX
, y
+ shiftY
], {
668 if (V
.HasEnpassant
) {
670 const Lep
= this.epSquares
.length
;
671 const epSquare
= this.epSquares
[Lep
- 1]; //always at least one element
674 epSquare
.x
== x
+ shiftX
&&
675 Math
.abs(epSquare
.y
- y
) == 1
677 let enpassantMove
= this.getBasicMove([x
, y
], [epSquare
.x
, epSquare
.y
]);
678 enpassantMove
.vanish
.push({
682 c: this.getColor(x
, epSquare
.y
)
684 moves
.push(enpassantMove
);
691 // What are the rook moves from square x,y ?
692 getPotentialRookMoves(sq
) {
693 return this.getSlideNJumpMoves(sq
, V
.steps
[V
.ROOK
]);
696 // What are the knight moves from square x,y ?
697 getPotentialKnightMoves(sq
) {
698 return this.getSlideNJumpMoves(sq
, V
.steps
[V
.KNIGHT
], "oneStep");
701 // What are the bishop moves from square x,y ?
702 getPotentialBishopMoves(sq
) {
703 return this.getSlideNJumpMoves(sq
, V
.steps
[V
.BISHOP
]);
706 // What are the queen moves from square x,y ?
707 getPotentialQueenMoves(sq
) {
708 return this.getSlideNJumpMoves(
710 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
])
714 // What are the king moves from square x,y ?
715 getPotentialKingMoves(sq
) {
716 // Initialize with normal moves
717 let moves
= this.getSlideNJumpMoves(
719 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
]),
722 return moves
.concat(this.getCastleMoves(sq
));
725 getCastleMoves([x
, y
]) {
726 const c
= this.getColor(x
, y
);
727 if (x
!= (c
== "w" ? V
.size
.x
- 1 : 0) || y
!= this.INIT_COL_KING
[c
])
728 return []; //x isn't first rank, or king has moved (shortcut)
731 const oppCol
= V
.GetOppCol(c
);
735 const finalSquares
= [
737 [V
.size
.y
- 2, V
.size
.y
- 3]
742 castleSide
++ //large, then small
744 if (!this.castleFlags
[c
][castleSide
]) continue;
745 // If this code is reached, rooks and king are on initial position
747 // Nothing on the path of the king ? (and no checks)
748 const finDist
= finalSquares
[castleSide
][0] - y
;
749 let step
= finDist
/ Math
.max(1, Math
.abs(finDist
));
753 this.isAttacked([x
, i
], [oppCol
]) ||
754 (this.board
[x
][i
] != V
.EMPTY
&&
755 // NOTE: next check is enough, because of chessboard constraints
756 (this.getColor(x
, i
) != c
||
757 ![V
.KING
, V
.ROOK
].includes(this.getPiece(x
, i
))))
759 continue castlingCheck
;
762 } while (i
!= finalSquares
[castleSide
][0]);
764 // Nothing on the path to the rook?
765 step
= castleSide
== 0 ? -1 : 1;
766 for (i
= y
+ step
; i
!= this.INIT_COL_ROOK
[c
][castleSide
]; i
+= step
) {
767 if (this.board
[x
][i
] != V
.EMPTY
) continue castlingCheck
;
769 const rookPos
= this.INIT_COL_ROOK
[c
][castleSide
];
771 // Nothing on final squares, except maybe king and castling rook?
772 for (i
= 0; i
< 2; i
++) {
774 this.board
[x
][finalSquares
[castleSide
][i
]] != V
.EMPTY
&&
775 this.getPiece(x
, finalSquares
[castleSide
][i
]) != V
.KING
&&
776 finalSquares
[castleSide
][i
] != rookPos
778 continue castlingCheck
;
782 // If this code is reached, castle is valid
786 new PiPo({ x: x
, y: finalSquares
[castleSide
][0], p: V
.KING
, c: c
}),
787 new PiPo({ x: x
, y: finalSquares
[castleSide
][1], p: V
.ROOK
, c: c
})
790 new PiPo({ x: x
, y: y
, p: V
.KING
, c: c
}),
791 new PiPo({ x: x
, y: rookPos
, p: V
.ROOK
, c: c
})
794 Math
.abs(y
- rookPos
) <= 2
795 ? { x: x
, y: rookPos
}
796 : { x: x
, y: y
+ 2 * (castleSide
== 0 ? -1 : 1) }
807 // For the interface: possible moves for the current turn from square sq
808 getPossibleMovesFrom(sq
) {
809 return this.filterValid(this.getPotentialMovesFrom(sq
));
812 // TODO: promotions (into R,B,N,Q) should be filtered only once
814 if (moves
.length
== 0) return [];
815 const color
= this.turn
;
816 return moves
.filter(m
=> {
818 const res
= !this.underCheck(color
);
824 // Search for all valid moves considering current turn
825 // (for engine and game end)
827 const color
= this.turn
;
828 const oppCol
= V
.GetOppCol(color
);
829 let potentialMoves
= [];
830 for (let i
= 0; i
< V
.size
.x
; i
++) {
831 for (let j
= 0; j
< V
.size
.y
; j
++) {
832 // Next condition "!= oppCol" to work with checkered variant
833 if (this.board
[i
][j
] != V
.EMPTY
&& this.getColor(i
, j
) != oppCol
) {
834 Array
.prototype.push
.apply(
836 this.getPotentialMovesFrom([i
, j
])
841 return this.filterValid(potentialMoves
);
844 // Stop at the first move found
846 const color
= this.turn
;
847 const oppCol
= V
.GetOppCol(color
);
848 for (let i
= 0; i
< V
.size
.x
; i
++) {
849 for (let j
= 0; j
< V
.size
.y
; j
++) {
850 if (this.board
[i
][j
] != V
.EMPTY
&& this.getColor(i
, j
) != oppCol
) {
851 const moves
= this.getPotentialMovesFrom([i
, j
]);
852 if (moves
.length
> 0) {
853 for (let k
= 0; k
< moves
.length
; k
++) {
854 if (this.filterValid([moves
[k
]]).length
> 0) return true;
863 // Check if pieces of color in 'colors' are attacking (king) on square x,y
864 isAttacked(sq
, colors
) {
866 this.isAttackedByPawn(sq
, colors
) ||
867 this.isAttackedByRook(sq
, colors
) ||
868 this.isAttackedByKnight(sq
, colors
) ||
869 this.isAttackedByBishop(sq
, colors
) ||
870 this.isAttackedByQueen(sq
, colors
) ||
871 this.isAttackedByKing(sq
, colors
)
875 // Is square x,y attacked by 'colors' pawns ?
876 isAttackedByPawn([x
, y
], colors
) {
877 for (let c
of colors
) {
878 let pawnShift
= c
== "w" ? 1 : -1;
879 if (x
+ pawnShift
>= 0 && x
+ pawnShift
< V
.size
.x
) {
880 for (let i
of [-1, 1]) {
884 this.getPiece(x
+ pawnShift
, y
+ i
) == V
.PAWN
&&
885 this.getColor(x
+ pawnShift
, y
+ i
) == c
895 // Is square x,y attacked by 'colors' rooks ?
896 isAttackedByRook(sq
, colors
) {
897 return this.isAttackedBySlideNJump(sq
, colors
, V
.ROOK
, V
.steps
[V
.ROOK
]);
900 // Is square x,y attacked by 'colors' knights ?
901 isAttackedByKnight(sq
, colors
) {
902 return this.isAttackedBySlideNJump(
911 // Is square x,y attacked by 'colors' bishops ?
912 isAttackedByBishop(sq
, colors
) {
913 return this.isAttackedBySlideNJump(sq
, colors
, V
.BISHOP
, V
.steps
[V
.BISHOP
]);
916 // Is square x,y attacked by 'colors' queens ?
917 isAttackedByQueen(sq
, colors
) {
918 return this.isAttackedBySlideNJump(
922 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
])
926 // Is square x,y attacked by 'colors' king(s) ?
927 isAttackedByKing(sq
, colors
) {
928 return this.isAttackedBySlideNJump(
932 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
]),
937 // Generic method for non-pawn pieces ("sliding or jumping"):
938 // is x,y attacked by a piece of color in array 'colors' ?
939 isAttackedBySlideNJump([x
, y
], colors
, piece
, steps
, oneStep
) {
940 for (let step
of steps
) {
941 let rx
= x
+ step
[0],
943 while (V
.OnBoard(rx
, ry
) && this.board
[rx
][ry
] == V
.EMPTY
&& !oneStep
) {
949 this.getPiece(rx
, ry
) === piece
&&
950 colors
.includes(this.getColor(rx
, ry
))
958 // Is color under check after his move ?
960 return this.isAttacked(this.kingPos
[color
], [V
.GetOppCol(color
)]);
966 // Apply a move on board
967 static PlayOnBoard(board
, move) {
968 for (let psq
of move.vanish
) board
[psq
.x
][psq
.y
] = V
.EMPTY
;
969 for (let psq
of move.appear
) board
[psq
.x
][psq
.y
] = psq
.c
+ psq
.p
;
971 // Un-apply the played move
972 static UndoOnBoard(board
, move) {
973 for (let psq
of move.appear
) board
[psq
.x
][psq
.y
] = V
.EMPTY
;
974 for (let psq
of move.vanish
) board
[psq
.x
][psq
.y
] = psq
.c
+ psq
.p
;
977 // After move is played, update variables + flags
978 updateVariables(move) {
979 let piece
= undefined;
980 // TODO: update variables before move is played, and just use this.turn ?
981 // (doesn't work in general, think MarseilleChess)
983 if (move.vanish
.length
>= 1) {
984 // Usual case, something is moved
985 piece
= move.vanish
[0].p
;
986 c
= move.vanish
[0].c
;
988 // Crazyhouse-like variants
989 piece
= move.appear
[0].p
;
990 c
= move.appear
[0].c
;
992 if (!['w','b'].includes(c
)) {
993 // Checkered, for example
994 c
= V
.GetOppCol(this.turn
);
996 const firstRank
= c
== "w" ? V
.size
.x
- 1 : 0;
998 // Update king position + flags
999 if (piece
== V
.KING
&& move.appear
.length
> 0) {
1000 this.kingPos
[c
][0] = move.appear
[0].x
;
1001 this.kingPos
[c
][1] = move.appear
[0].y
;
1002 if (V
.HasFlags
) this.castleFlags
[c
] = [false, false];
1006 // Update castling flags if rooks are moved
1007 const oppCol
= V
.GetOppCol(c
);
1008 const oppFirstRank
= V
.size
.x
- 1 - firstRank
;
1010 move.start
.x
== firstRank
&& //our rook moves?
1011 this.INIT_COL_ROOK
[c
].includes(move.start
.y
)
1013 const flagIdx
= move.start
.y
== this.INIT_COL_ROOK
[c
][0] ? 0 : 1;
1014 this.castleFlags
[c
][flagIdx
] = false;
1016 move.end
.x
== oppFirstRank
&& //we took opponent rook?
1017 this.INIT_COL_ROOK
[oppCol
].includes(move.end
.y
)
1019 const flagIdx
= move.end
.y
== this.INIT_COL_ROOK
[oppCol
][0] ? 0 : 1;
1020 this.castleFlags
[oppCol
][flagIdx
] = false;
1025 // After move is undo-ed *and flags resetted*, un-update other variables
1026 // TODO: more symmetry, by storing flags increment in move (?!)
1027 unupdateVariables(move) {
1028 // (Potentially) Reset king position
1029 const c
= this.getColor(move.start
.x
, move.start
.y
);
1030 if (this.getPiece(move.start
.x
, move.start
.y
) == V
.KING
)
1031 this.kingPos
[c
] = [move.start
.x
, move.start
.y
];
1036 // if (!this.states) this.states = [];
1037 // const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen();
1038 // this.states.push(stateFen);
1040 if (V
.HasFlags
) move.flags
= JSON
.stringify(this.aggregateFlags()); //save flags (for undo)
1041 if (V
.HasEnpassant
) this.epSquares
.push(this.getEpSquare(move));
1042 V
.PlayOnBoard(this.board
, move);
1043 this.turn
= V
.GetOppCol(this.turn
);
1045 this.updateVariables(move);
1049 if (V
.HasEnpassant
) this.epSquares
.pop();
1050 if (V
.HasFlags
) this.disaggregateFlags(JSON
.parse(move.flags
));
1051 V
.UndoOnBoard(this.board
, move);
1052 this.turn
= V
.GetOppCol(this.turn
);
1054 this.unupdateVariables(move);
1057 // const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen();
1058 // if (stateFen != this.states[this.states.length-1]) debugger;
1059 // this.states.pop();
1065 // What is the score ? (Interesting if game is over)
1067 if (this.atLeastOneMove())
1071 const color
= this.turn
;
1072 // No valid move: stalemate or checkmate?
1073 if (!this.isAttacked(this.kingPos
[color
], [V
.GetOppCol(color
)]))
1076 return color
== "w" ? "0-1" : "1-0";
1083 static get VALUES() {
1094 // "Checkmate" (unreachable eval)
1095 static get INFINITY() {
1099 // At this value or above, the game is over
1100 static get THRESHOLD_MATE() {
1104 // Search depth: 2 for high branching factor, 4 for small (Loser chess, eg.)
1105 static get SEARCH_DEPTH() {
1109 // NOTE: works also for extinction chess because depth is 3...
1111 const maxeval
= V
.INFINITY
;
1112 const color
= this.turn
;
1113 // Some variants may show a bigger moves list to the human (Switching),
1114 // thus the argument "computer" below (which is generally ignored)
1115 let moves1
= this.getAllValidMoves("computer");
1116 if (moves1
.length
== 0)
1117 //TODO: this situation should not happen
1120 // Can I mate in 1 ? (for Magnetic & Extinction)
1121 for (let i
of shuffle(ArrayFun
.range(moves1
.length
))) {
1122 this.play(moves1
[i
]);
1123 let finish
= Math
.abs(this.evalPosition()) >= V
.THRESHOLD_MATE
;
1125 const score
= this.getCurrentScore();
1126 if (["1-0", "0-1"].includes(score
)) finish
= true;
1128 this.undo(moves1
[i
]);
1129 if (finish
) return moves1
[i
];
1132 // Rank moves using a min-max at depth 2
1133 for (let i
= 0; i
< moves1
.length
; i
++) {
1134 // Initial self evaluation is very low: "I'm checkmated"
1135 moves1
[i
].eval
= (color
== "w" ? -1 : 1) * maxeval
;
1136 this.play(moves1
[i
]);
1137 const score1
= this.getCurrentScore();
1138 let eval2
= undefined;
1139 if (score1
== "*") {
1140 // Initial enemy evaluation is very low too, for him
1141 eval2
= (color
== "w" ? 1 : -1) * maxeval
;
1142 // Second half-move:
1143 let moves2
= this.getAllValidMoves("computer");
1144 for (let j
= 0; j
< moves2
.length
; j
++) {
1145 this.play(moves2
[j
]);
1146 const score2
= this.getCurrentScore();
1147 let evalPos
= 0; //1/2 value
1150 evalPos
= this.evalPosition();
1160 (color
== "w" && evalPos
< eval2
) ||
1161 (color
== "b" && evalPos
> eval2
)
1165 this.undo(moves2
[j
]);
1167 } else eval2
= score1
== "1/2" ? 0 : (score1
== "1-0" ? 1 : -1) * maxeval
;
1169 (color
== "w" && eval2
> moves1
[i
].eval
) ||
1170 (color
== "b" && eval2
< moves1
[i
].eval
)
1172 moves1
[i
].eval
= eval2
;
1174 this.undo(moves1
[i
]);
1176 moves1
.sort((a
, b
) => {
1177 return (color
== "w" ? 1 : -1) * (b
.eval
- a
.eval
);
1180 let candidates
= [0]; //indices of candidates moves
1181 for (let j
= 1; j
< moves1
.length
&& moves1
[j
].eval
== moves1
[0].eval
; j
++)
1183 let currentBest
= moves1
[candidates
[randInt(candidates
.length
)]];
1185 // Skip depth 3+ if we found a checkmate (or if we are checkmated in 1...)
1186 if (V
.SEARCH_DEPTH
>= 3 && Math
.abs(moves1
[0].eval
) < V
.THRESHOLD_MATE
) {
1187 // From here, depth >= 3: may take a while, so we control time
1188 const timeStart
= Date
.now();
1189 for (let i
= 0; i
< moves1
.length
; i
++) {
1190 if (Date
.now() - timeStart
>= 5000)
1191 //more than 5 seconds
1192 return currentBest
; //depth 2 at least
1193 this.play(moves1
[i
]);
1194 // 0.1 * oldEval : heuristic to avoid some bad moves (not all...)
1196 0.1 * moves1
[i
].eval
+
1197 this.alphabeta(V
.SEARCH_DEPTH
- 1, -maxeval
, maxeval
);
1198 this.undo(moves1
[i
]);
1200 moves1
.sort((a
, b
) => {
1201 return (color
== "w" ? 1 : -1) * (b
.eval
- a
.eval
);
1203 } else return currentBest
;
1204 // console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
1207 for (let j
= 1; j
< moves1
.length
&& moves1
[j
].eval
== moves1
[0].eval
; j
++)
1209 return moves1
[candidates
[randInt(candidates
.length
)]];
1212 alphabeta(depth
, alpha
, beta
) {
1213 const maxeval
= V
.INFINITY
;
1214 const color
= this.turn
;
1215 const score
= this.getCurrentScore();
1217 return score
== "1/2" ? 0 : (score
== "1-0" ? 1 : -1) * maxeval
;
1218 if (depth
== 0) return this.evalPosition();
1219 const moves
= this.getAllValidMoves("computer");
1220 let v
= color
== "w" ? -maxeval : maxeval
;
1222 for (let i
= 0; i
< moves
.length
; i
++) {
1223 this.play(moves
[i
]);
1224 v
= Math
.max(v
, this.alphabeta(depth
- 1, alpha
, beta
));
1225 this.undo(moves
[i
]);
1226 alpha
= Math
.max(alpha
, v
);
1227 if (alpha
>= beta
) break; //beta cutoff
1231 for (let i
= 0; i
< moves
.length
; i
++) {
1232 this.play(moves
[i
]);
1233 v
= Math
.min(v
, this.alphabeta(depth
- 1, alpha
, beta
));
1234 this.undo(moves
[i
]);
1235 beta
= Math
.min(beta
, v
);
1236 if (alpha
>= beta
) break; //alpha cutoff
1244 // Just count material for now
1245 for (let i
= 0; i
< V
.size
.x
; i
++) {
1246 for (let j
= 0; j
< V
.size
.y
; j
++) {
1247 if (this.board
[i
][j
] != V
.EMPTY
) {
1248 const sign
= this.getColor(i
, j
) == "w" ? 1 : -1;
1249 evaluation
+= sign
* V
.VALUES
[this.getPiece(i
, j
)];
1256 /////////////////////////
1257 // MOVES + GAME NOTATION
1258 /////////////////////////
1260 // Context: just before move is played, turn hasn't changed
1261 // TODO: un-ambiguous notation (switch on piece type, check directions...)
1263 if (move.appear
.length
== 2 && move.appear
[0].p
== V
.KING
)
1265 return move.end
.y
< move.start
.y
? "0-0-0" : "0-0";
1267 // Translate final square
1268 const finalSquare
= V
.CoordsToSquare(move.end
);
1270 const piece
= this.getPiece(move.start
.x
, move.start
.y
);
1271 if (piece
== V
.PAWN
) {
1274 if (move.vanish
.length
> move.appear
.length
) {
1276 const startColumn
= V
.CoordToColumn(move.start
.y
);
1277 notation
= startColumn
+ "x" + finalSquare
;
1279 else notation
= finalSquare
;
1280 if (move.appear
.length
> 0 && move.appear
[0].p
!= V
.PAWN
)
1282 notation
+= "=" + move.appear
[0].p
.toUpperCase();
1287 piece
.toUpperCase() +
1288 (move.vanish
.length
> move.appear
.length
? "x" : "") +