Commit | Line | Data |
---|---|---|
98b8a5dd | 1 | optimBeta <- function(N, n, K, p, beta, b, link, weights, ncores) |
1d014a86 BA |
2 | { |
3 | library(morpheus) | |
4 | res <- multiRun( | |
98b8a5dd | 5 | list(n=n, p=p, beta=beta, b=b, optargs=list(K=K, link=link, weights=weights)), |
1d014a86 BA |
6 | list( |
7 | # morpheus | |
8 | function(fargs) { | |
9 | library(morpheus) | |
10 | K <- fargs$optargs$K | |
11 | M <- computeMoments(fargs$X, fargs$Y) | |
12 | fargs$optargs$M <- M | |
13 | mu <- computeMu(fargs$X, fargs$Y, fargs$optargs) | |
0ad4c8de BA |
14 | op <- optimParams(K,fargs$optargs$link,fargs$optargs) |
15 | x_init <- list(p=rep(1/K,K-1), beta=mu, b=rep(0,K)) | |
9007ccc1 | 16 | tryCatch({ |
0ad4c8de | 17 | res2 <- do.call(rbind, op$run(x_init)) |
9007ccc1 BA |
18 | }, error = function(e) { |
19 | res2 <- NA | |
20 | }) | |
21 | res2 | |
22 | } | |
23 | # , | |
24 | # # flexmix | |
25 | # function(fargs) { | |
26 | # library(flexmix) | |
27 | # source("../patch_Bettina/FLXMRglm.R") | |
28 | # K <- fargs$optargs$K | |
29 | # dat <- as.data.frame( cbind(fargs$Y,fargs$X) ) | |
30 | # res2 <- NULL | |
31 | # tryCatch({ | |
32 | # fm <- flexmix( cbind(V1, 1-V1) ~ .-V1, data=dat, k=K, | |
33 | # model = FLXMRglm(family = binomial(link = link)) ) | |
34 | # p <- mean(fm@posterior[["scaled"]][,1]) | |
35 | # out <- refit(fm) | |
36 | # beta_b <- sapply( seq_len(K), function(i) { | |
37 | # as.double( out@components[[1]][[i]][,1] ) | |
38 | # } ) | |
39 | # res2 <- rbind(p, beta_b[2:nrow(beta_b),], beta_b[1,]) | |
40 | # }, error = function(e) { | |
41 | # res2 <- NA | |
42 | # }) | |
43 | # res2 | |
44 | # } | |
45 | ), | |
1d014a86 BA |
46 | prepareArgs = function(fargs, index) { |
47 | library(morpheus) | |
48 | io = generateSampleIO(fargs$n, fargs$p, fargs$beta, fargs$b, fargs$optargs$link) | |
49 | fargs$X = io$X | |
50 | fargs$Y = io$Y | |
51 | fargs$optargs$K = ncol(fargs$beta) | |
1d014a86 BA |
52 | fargs |
53 | }, N=N, ncores=ncores, verbose=TRUE) | |
54 | p <- c(p, 1-sum(p)) | |
9007ccc1 BA |
55 | for (i in 1:length(res)) { |
56 | for (j in N:1) { | |
57 | if (is.null(res[[i]][[j]]) || is.na(res[[i]][[j]])) | |
58 | res[[i]][[j]] <- NULL | |
59 | } | |
60 | print(paste("Count valid runs for ",i," = ",length(res[[i]]),sep="")) | |
1d014a86 | 61 | res[[i]] <- alignMatrices(res[[i]], ref=rbind(p,beta,b), ls_mode="exact") |
9007ccc1 | 62 | } |
1d014a86 BA |
63 | res |
64 | } | |
65 | ||
66 | #model = binomial; default values: | |
67 | link = "logit" | |
68 | N <- 10 | |
69 | d <- 2 | |
70 | n <- 1e4 | |
71 | ncores <- 1 | |
b46623ad | 72 | strw <- "1-1-1" |
98b8a5dd | 73 | weights <- c(1,1,1) |
1d014a86 BA |
74 | |
75 | cmd_args <- commandArgs() | |
76 | for (arg in cmd_args) | |
77 | { | |
78 | if (substr(arg,1,1)!='-') { | |
79 | spl <- strsplit(arg,'=')[[1]] | |
80 | if (spl[1] == "nc") { | |
81 | ncores <- as.integer(spl[2]) | |
82 | } else if (spl[1] == "N") { | |
83 | N <- as.integer(spl[2]) | |
84 | } else if (spl[1] == "n") { | |
85 | n <- as.integer(spl[2]) | |
86 | } else if (spl[1] == "d") { | |
87 | d <- as.integer(spl[2]) | |
88 | } else if (spl[1] == "link") { | |
89 | link <- spl[2] | |
98b8a5dd | 90 | } else if (spl[1] == "weights") { |
b46623ad BA |
91 | strw <- spl[2] |
92 | weights <- as.numeric(unlist(strsplit(spl[2], ","))) | |
1d014a86 BA |
93 | } |
94 | } | |
95 | } | |
96 | ||
97 | if (d == 2) { | |
98 | K <- 2 | |
99 | p <- .5 | |
100 | b <- c(-.2, .5) | |
101 | beta <- matrix( c(1,-2, 3,1), ncol=K ) | |
102 | } else if (d == 5) { | |
103 | K <- 2 | |
104 | p <- .5 | |
105 | b <- c(-.2, .5) | |
106 | beta <- matrix( c(1,2,-1,0,3, 2,-3,0,1,0), ncol=K ) | |
107 | } else if (d == 10) { | |
108 | K <- 3 | |
109 | p <- c(.3, .3) | |
110 | b <- c(-.2, 0, .5) | |
111 | beta <- matrix( c(1,2,-1,0,3,4,-1,-3,0,2, 2,-3,0,1,0,-1,-4,3,2,0, -1,1,3,-1,0,0,2,0,1,-2), ncol=K ) | |
112 | } else if (d == 20) { | |
113 | K <- 3 | |
114 | p <- c(.3, .3) | |
115 | b <- c(-.2, 0, .5) | |
116 | beta <- matrix( c(1,2,-1,0,3,4,-1,-3,0,2,2,-3,0,1,0,-1,-4,3,2,0, -1,1,3,-1,0,0,2,0,1,-2,1,2,-1,0,3,4,-1,-3,0,2, 2,-3,0,1,0,-1,-4,3,2,0,1,1,2,2,-2,-2,3,1,0,0), ncol=K ) | |
117 | } | |
118 | ||
98b8a5dd | 119 | mr <- optimBeta(N, n, K, p, beta, b, link, weights, ncores) |
0ad4c8de | 120 | mr_params <- list("N"=N, "nc"=ncores, "n"=n, "K"=K, "d"=d, "link"=link, |
98b8a5dd | 121 | "p"=c(p,1-sum(p)), "beta"=beta, "b"=b, "weights"=weights) |
1d014a86 | 122 | |
b46623ad | 123 | save("mr", "mr_params", file=paste("res_",n,"_",d,"_",link,"_",strw,".RData",sep="")) |