228ee602 |
1 | Package: valse |
2 | Title: Variable Selection With Mixture Of Models |
3 | Date: 2016-12-01 |
4 | Version: 0.1-0 |
5 | Description: Two methods are implemented to cluster data with finite mixture |
6 | regression models. Those procedures deal with high-dimensional covariates and |
7 | responses through a variable selection procedure based on the Lasso estimator. |
8 | A low-rank constraint could be added, computed for the Lasso-Rank procedure. |
9 | A collection of models is constructed, varying the level of sparsity and the |
10 | number of clusters, and a model is selected using a model selection criterion |
11 | (slope heuristic, BIC or AIC). Details of the procedure are provided in 'Model- |
12 | based clustering for high-dimensional data. Application to functional data' by |
13 | Emilie Devijver, published in Advances in Data Analysis and Clustering (2016). |
14 | Author: Benjamin Auder <Benjamin.Auder@math.u-psud.fr> [aut,cre], |
15 | Emilie Devijver <Emilie.Devijver@kuleuven.be> [aut], |
16 | Benjamin Goehry <Benjamin.Goehry@math.u-psud.fr> [aut] |
17 | Maintainer: Benjamin Auder <Benjamin.Auder@math.u-psud.fr> |
18 | Depends: |
19 | R (>= 3.0.0) |
20 | Imports: |
21 | MASS, |
22 | parallel |
23 | Suggests: |
24 | capushe, |
25 | roxygen2, |
26 | testhat |
27 | URL: http://git.auder.net/?p=valse.git |
28 | License: MIT + file LICENSE |
29 | RoxygenNote: 5.0.1 |
30 | Collate: |
31 | 'plot_valse.R' |
32 | 'main.R' |
33 | 'selectVariables.R' |
34 | 'constructionModelesLassoRank.R' |
35 | 'constructionModelesLassoMLE.R' |
36 | 'computeGridLambda.R' |
37 | 'initSmallEM.R' |
38 | 'EMGrank.R' |
39 | 'EMGLLF.R' |
40 | 'generateXY.R' |
41 | 'A_NAMESPACE.R' |
42 | 'util.R' |