Commit | Line | Data |
---|---|---|
ffdf9447 | 1 | #' computeGridLambda |
086ca318 | 2 | #' |
d1531659 | 3 | #' Construct the data-driven grid for the regularization parameters used for the Lasso estimator |
086ca318 | 4 | #' |
d1531659 | 5 | #' @param phiInit value for phi |
ffdf9447 BA |
6 | #' @param rhoInit\tvalue for rho |
7 | #' @param piInit\tvalue for pi | |
d1531659 | 8 | #' @param gamInit value for gamma |
e3f2fe8a | 9 | #' @param X matrix of covariates (of size n*p) |
10 | #' @param Y matrix of responses (of size n*m) | |
11 | #' @param gamma power of weights in the penalty | |
086ca318 BA |
12 | #' @param mini minimum number of iterations in EM algorithm |
13 | #' @param maxi maximum number of iterations in EM algorithm | |
14 | #' @param tau threshold to stop EM algorithm | |
15 | #' | |
d1531659 | 16 | #' @return the grid of regularization parameters |
086ca318 | 17 | #' |
d1531659 | 18 | #' @export |
ffdf9447 BA |
19 | computeGridLambda <- function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, |
20 | maxi, tau, fast = TRUE) | |
21 | { | |
22 | n <- nrow(X) | |
23 | p <- dim(phiInit)[1] | |
24 | m <- dim(phiInit)[2] | |
25 | k <- dim(phiInit)[3] | |
26 | ||
27 | list_EMG <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda = 0, | |
28 | X, Y, tau, fast) | |
29 | grid <- array(0, dim = c(p, m, k)) | |
30 | for (i in 1:p) | |
31 | { | |
32 | for (j in 1:m) grid[i, j, ] <- abs(list_EMG$S[i, j, ])/(n * list_EMG$pi^gamma) | |
33 | } | |
34 | sort(unique(grid)) | |
39046da6 | 35 | } |