remove pre-commit hook; fix weird formatting from formatR package
[valse.git] / pkg / R / EMGLLF.R
CommitLineData
ffdf9447 1#' EMGLLF
4fed76cc
BA
2#'
3#' Description de EMGLLF
4#'
43d76c49 5#' @param phiInit an initialization for phi
6#' @param rhoInit an initialization for rho
7#' @param piInit an initialization for pi
8#' @param gamInit initialization for the a posteriori probabilities
9#' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
10#' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
11#' @param gamma integer for the power in the penaly, by default = 1
12#' @param lambda regularization parameter in the Lasso estimation
13#' @param X matrix of covariates (of size n*p)
14#' @param Y matrix of responses (of size n*m)
15#' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
4fed76cc 16#'
c280fe59
BA
17#' @return A list ... phi,rho,pi,LLF,S,affec:
18#' phi : parametre de moyenne renormalisé, calculé par l'EM
19#' rho : parametre de variance renormalisé, calculé par l'EM
20#' pi : parametre des proportions renormalisé, calculé par l'EM
21#' LLF : log vraisemblance associée à cet échantillon, pour les valeurs estimées des paramètres
22#' S : ... affec : ...
4fed76cc 23#'
4fed76cc 24#' @export
ffdf9447
BA
25EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
26 X, Y, eps, fast = TRUE)
1b698c16 27{
fb6e49cb 28 if (!fast)
29 {
30 # Function in R
ffdf9447
BA
31 return(.EMGLLF_R(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
32 X, Y, eps))
fb6e49cb 33 }
1b698c16 34
fb6e49cb 35 # Function in C
ffdf9447
BA
36 n <- nrow(X) #nombre d'echantillons
37 p <- ncol(X) #nombre de covariables
38 m <- ncol(Y) #taille de Y (multivarié)
39 k <- length(piInit) #nombre de composantes dans le mélange
40 .Call("EMGLLF", phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
41 X, Y, eps, phi = double(p * m * k), rho = double(m * m * k), pi = double(k),
42 LLF = double(maxi), S = double(p * m * k), affec = integer(n), n, p, m, k,
43 PACKAGE = "valse")
4fed76cc 44}
aa480ac1
BA
45
46# R version - slow but easy to read
ffdf9447
BA
47.EMGLLF_R <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
48 X2, Y, eps)
1b698c16 49{
fb6e49cb 50 # Matrix dimensions
ffdf9447 51 n <- dim(Y)[1]
1b698c16 52 if (length(dim(phiInit)) == 2) {
ffdf9447
BA
53 p <- 1
54 m <- dim(phiInit)[1]
55 k <- dim(phiInit)[2]
1b698c16 56 } else {
ffdf9447
BA
57 p <- dim(phiInit)[1]
58 m <- dim(phiInit)[2]
59 k <- dim(phiInit)[3]
fb6e49cb 60 }
ffdf9447
BA
61 X <- matrix(nrow = n, ncol = p)
62 X[1:n, 1:p] <- X2
1b698c16 63
fb6e49cb 64 # Outputs
ffdf9447
BA
65 phi <- array(NA, dim = c(p, m, k))
66 phi[1:p, , ] <- phiInit
67 rho <- rhoInit
68 pi <- piInit
69 llh <- -Inf
70 S <- array(0, dim = c(p, m, k))
1b698c16 71
fb6e49cb 72 # Algorithm variables
ffdf9447
BA
73 gam <- gamInit
74 Gram2 <- array(0, dim = c(p, p, k))
75 ps2 <- array(0, dim = c(p, m, k))
76 X2 <- array(0, dim = c(n, p, k))
77 Y2 <- array(0, dim = c(n, m, k))
78 EPS <- 1e-15
1b698c16 79
fb6e49cb 80 for (ite in 1:maxi)
81 {
82 # Remember last pi,rho,phi values for exit condition in the end of loop
ffdf9447
BA
83 Phi <- phi
84 Rho <- rho
85 Pi <- pi
1b698c16 86
fb6e49cb 87 # Computations associated to X and Y
88 for (r in 1:k)
89 {
1b698c16
BA
90 for (mm in 1:m)
91 Y2[, mm, r] <- sqrt(gam[, r]) * Y[, mm]
92 for (i in 1:n)
93 X2[i, , r] <- sqrt(gam[i, r]) * X[i, ]
94 for (mm in 1:m)
95 ps2[, mm, r] <- crossprod(X2[, , r], Y2[, mm, r])
fb6e49cb 96 for (j in 1:p)
97 {
1b698c16
BA
98 for (s in 1:p)
99 Gram2[j, s, r] <- crossprod(X2[, j, r], X2[, s, r])
fb6e49cb 100 }
101 }
1b698c16
BA
102
103 ## M step
104
fb6e49cb 105 # For pi
ffdf9447
BA
106 b <- sapply(1:k, function(r) sum(abs(phi[, , r])))
107 gam2 <- colSums(gam)
108 a <- sum(gam %*% log(pi))
1b698c16 109
fb6e49cb 110 # While the proportions are nonpositive
ffdf9447
BA
111 kk <- 0
112 pi2AllPositive <- FALSE
fb6e49cb 113 while (!pi2AllPositive)
114 {
ffdf9447
BA
115 pi2 <- pi + 0.1^kk * ((1/n) * gam2 - pi)
116 pi2AllPositive <- all(pi2 >= 0)
117 kk <- kk + 1
fb6e49cb 118 }
1b698c16 119
fb6e49cb 120 # t(m) is the largest value in the grid O.1^k such that it is nonincreasing
1b698c16
BA
121 while (kk < 1000 && -a/n + lambda * sum(pi^gamma * b) <
122 -sum(gam2 * log(pi2))/n + lambda * sum(pi2^gamma * b))
123 {
ffdf9447
BA
124 pi2 <- pi + 0.1^kk * (1/n * gam2 - pi)
125 kk <- kk + 1
fb6e49cb 126 }
ffdf9447
BA
127 t <- 0.1^kk
128 pi <- (pi + t * (pi2 - pi))/sum(pi + t * (pi2 - pi))
1b698c16 129
ffdf9447 130 # For phi and rho
fb6e49cb 131 for (r in 1:k)
132 {
133 for (mm in 1:m)
134 {
ffdf9447 135 ps <- 0
1b698c16
BA
136 for (i in 1:n)
137 ps <- ps + Y2[i, mm, r] * sum(X2[i, , r] * phi[, mm, r])
ffdf9447
BA
138 nY2 <- sum(Y2[, mm, r]^2)
139 rho[mm, mm, r] <- (ps + sqrt(ps^2 + 4 * nY2 * gam2[r]))/(2 * nY2)
fb6e49cb 140 }
141 }
1b698c16 142
fb6e49cb 143 for (r in 1:k)
144 {
145 for (j in 1:p)
146 {
147 for (mm in 1:m)
148 {
1b698c16
BA
149 S[j, mm, r] <- -rho[mm, mm, r] * ps2[j, mm, r]
150 + sum(phi[-j, mm, r] * Gram2[j, -j, r])
151 if (abs(S[j, mm, r]) <= n * lambda * (pi[r]^gamma)) {
152 phi[j, mm, r] <- 0
153 } else if (S[j, mm, r] > n * lambda * (pi[r]^gamma)) {
154 phi[j, mm, r] <- (n * lambda * (pi[r]^gamma) - S[j, mm, r])/Gram2[j, j, r]
155 } else {
156 phi[j, mm, r] <- -(n * lambda * (pi[r]^gamma) + S[j, mm, r])/Gram2[j, j, r]
f7e157cd 157 }
fb6e49cb 158 }
159 }
160 }
1b698c16 161
ffdf9447 162 ######## E step#
1b698c16 163
fb6e49cb 164 # Precompute det(rho[,,r]) for r in 1...k
ffdf9447
BA
165 detRho <- sapply(1:k, function(r) det(rho[, , r]))
166 gam1 <- matrix(0, nrow = n, ncol = k)
fb6e49cb 167 for (i in 1:n)
168 {
169 # Update gam[,]
1b698c16
BA
170 for (r in 1:k)
171 {
172 gam1[i, r] <- pi[r] * exp(-0.5
173 * sum((Y[i, ] %*% rho[, , r] - X[i, ] %*% phi[, , r])^2)) * detRho[r]
174 }
fb6e49cb 175 }
1b698c16 176 gam <- gam1 / rowSums(gam1)
ffdf9447
BA
177 sumLogLLH <- sum(log(rowSums(gam)) - log((2 * base::pi)^(m/2)))
178 sumPen <- sum(pi^gamma * b)
179 last_llh <- llh
180 llh <- -sumLogLLH/n + lambda * sumPen
181 dist <- ifelse(ite == 1, llh, (llh - last_llh)/(1 + abs(llh)))
182 Dist1 <- max((abs(phi - Phi))/(1 + abs(phi)))
183 Dist2 <- max((abs(rho - Rho))/(1 + abs(rho)))
184 Dist3 <- max((abs(pi - Pi))/(1 + abs(Pi)))
185 dist2 <- max(Dist1, Dist2, Dist3)
1b698c16 186
ffdf9447 187 if (ite >= mini && (dist >= eps || dist2 >= sqrt(eps)))
fb6e49cb 188 break
189 }
1b698c16 190
ffdf9447 191 list(phi = phi, rho = rho, pi = pi, llh = llh, S = S)
aa480ac1 192}