Commit | Line | Data |
---|---|---|
7f0781b7 | 1 | #' @include defaults.R |
3dcbfeef | 2 | |
7f0781b7 BA |
3 | #' @title Cluster power curves with PAM in parallel |
4 | #' | |
5 | #' @description Groups electricity power curves (or any series of similar nature) by applying PAM | |
cea14f3a | 6 | #' algorithm in parallel to chunks of size \code{nb_series_per_chunk} |
7f0781b7 BA |
7 | #' |
8 | #' @param data Access to the data, which can be of one of the three following types: | |
9 | #' \itemize{ | |
10 | #' \item data.frame: each line contains its ID in the first cell, and all values after | |
11 | #' \item connection: any R connection object (e.g. a file) providing lines as described above | |
12 | #' \item function: a custom way to retrieve the curves; it has two arguments: the start index | |
13 | #' (start) and number of curves (n); see example in package vignette. | |
14 | #' } | |
1c6f223e BA |
15 | #' @param K1 Number of super-consumers to be found after stage 1 (K1 << N) |
16 | #' @param K2 Number of clusters to be found after stage 2 (K2 << K1) | |
17 | #' @param ntasks Number of tasks (parallel iterations to obtain K1 medoids); default: 1. | |
18 | #' Note: ntasks << N, so that N is "roughly divisible" by N (number of series) | |
19 | #' @param nb_series_per_chunk (Maximum) number of series in each group, inside a task | |
cea14f3a | 20 | #' @param min_series_per_chunk Minimum number of series in each group |
7f0781b7 BA |
21 | #' @param writeTmp Function to write temporary wavelets coefficients (+ identifiers); |
22 | #' see defaults in defaults.R | |
23 | #' @param readTmp Function to read temporary wavelets coefficients (see defaults.R) | |
3465b246 | 24 | #' @param wf Wavelet transform filter; see ?wt.filter. Default: haar |
7f0781b7 BA |
25 | #' @param WER "end" to apply stage 2 after stage 1 has iterated and finished, or "mix" |
26 | #' to apply it after every stage 1 | |
1c6f223e BA |
27 | #' @param ncores_tasks number of parallel tasks (1 to disable: sequential tasks) |
28 | #' @param ncores_clust number of parallel clusterings in one task | |
7f0781b7 BA |
29 | #' |
30 | #' @return A data.frame of the final medoids curves (identifiers + values) | |
1c6f223e BA |
31 | #' |
32 | #' @examples | |
33 | #' getData = function(start, n) { | |
34 | #' con = dbConnect(drv = RSQLite::SQLite(), dbname = "mydata.sqlite") | |
35 | #' df = dbGetQuery(con, paste( | |
36 | #' "SELECT * FROM times_values GROUP BY id OFFSET ",start, | |
37 | #' "LIMIT ", n, " ORDER BY date", sep="")) | |
38 | #' return (df) | |
39 | #' } | |
40 | #' cl = epclust(getData, K1=200, K2=15, ntasks=1000, nb_series_per_chunk=5000, WER="mix") | |
41 | #' @export | |
42 | epclust = function(data, K1, K2, | |
43 | ntasks=1, nb_series_per_chunk=50*K1, min_series_per_chunk=5*K1, | |
44 | writeTmp=defaultWriteTmp, readTmp=defaultReadTmp, wf="haar", WER="end", | |
45 | ncores_tasks=1, ncores_clust=4) | |
ac1d4231 | 46 | { |
7f0781b7 BA |
47 | #TODO: setRefClass(...) to avoid copy data: |
48 | #http://stackoverflow.com/questions/2603184/r-pass-by-reference | |
ac1d4231 | 49 | |
7f0781b7 BA |
50 | #0) check arguments |
51 | if (!is.data.frame(data) && !is.function(data)) | |
6ecf5c2d BA |
52 | tryCatch( |
53 | { | |
54 | if (is.character(data)) | |
55 | { | |
cea14f3a | 56 | data_con = file(data, open="r") |
6ecf5c2d BA |
57 | } else if (!isOpen(data)) |
58 | { | |
59 | open(data) | |
cea14f3a | 60 | data_con = data |
6ecf5c2d BA |
61 | } |
62 | }, | |
7f0781b7 BA |
63 | error="data should be a data.frame, a function or a valid connection") |
64 | if (!is.integer(K) || K < 2) | |
65 | stop("K should be an integer greater or equal to 2") | |
cea14f3a BA |
66 | if (!is.integer(nb_series_per_chunk) || nb_series_per_chunk < K) |
67 | stop("nb_series_per_chunk should be an integer greater or equal to K") | |
7f0781b7 BA |
68 | if (!is.function(writeTmp) || !is.function(readTmp)) |
69 | stop("read/writeTmp should be functional (see defaults.R)") | |
70 | if (WER!="end" && WER!="mix") | |
71 | stop("WER takes values in {'end','mix'}") | |
dc1aa85a | 72 | #concerning ncores, any non-integer type will be treated as "use parallel:detectCores()/4" |
ac1d4231 | 73 | |
3d061515 | 74 | #1) acquire data (process curves, get as coeffs) |
aa7daeaa | 75 | #TODO: for data.frame and custom function, run in parallel (connections are sequential[?!]) |
7f0781b7 | 76 | index = 1 |
cea14f3a | 77 | nb_curves = 0 |
6ecf5c2d | 78 | repeat |
ac1d4231 | 79 | { |
cea14f3a | 80 | coeffs_chunk = NULL |
7f0781b7 | 81 | if (is.data.frame(data)) |
3dcbfeef | 82 | { |
7f0781b7 | 83 | #full data matrix |
b9f1c0c7 BA |
84 | if (index < nrow(data)) |
85 | { | |
cea14f3a | 86 | coeffs_chunk = curvesToCoeffs( |
3465b246 | 87 | data[index:(min(index+nb_series_per_chunk-1,nrow(data))),], wf) |
b9f1c0c7 | 88 | } |
7f0781b7 BA |
89 | } else if (is.function(data)) |
90 | { | |
91 | #custom user function to retrieve next n curves, probably to read from DB | |
3465b246 | 92 | coeffs_chunk = curvesToCoeffs( data(index, nb_series_per_chunk), wf ) |
7f0781b7 BA |
93 | } else |
94 | { | |
95 | #incremental connection | |
96 | #TODO: find a better way to parse than using a temp file | |
cea14f3a | 97 | ascii_lines = readLines(data_con, nb_series_per_chunk) |
b9f1c0c7 BA |
98 | if (length(ascii_lines > 0)) |
99 | { | |
cea14f3a BA |
100 | series_chunk_file = ".tmp/series_chunk" |
101 | writeLines(ascii_lines, series_chunk_file) | |
3465b246 | 102 | coeffs_chunk = curvesToCoeffs( read.csv(series_chunk_file), wf ) |
b9f1c0c7 | 103 | } |
3dcbfeef | 104 | } |
cea14f3a BA |
105 | if (is.null(coeffs_chunk)) |
106 | break | |
107 | writeTmp(coeffs_chunk) | |
108 | nb_curves = nb_curves + nrow(coeffs_chunk) | |
109 | index = index + nb_series_per_chunk | |
8e6accca | 110 | } |
cea14f3a BA |
111 | if (exists(data_con)) |
112 | close(data_con) | |
113 | if (nb_curves < min_series_per_chunk) | |
114 | stop("Not enough data: less rows than min_series_per_chunk!") | |
8e6accca | 115 | |
cea14f3a | 116 | #2) process coeffs (by nb_series_per_chunk) and cluster them in parallel |
8e6accca | 117 | library(parallel) |
1c6f223e BA |
118 | cl_tasks = parallel::makeCluster(ncores_tasks) |
119 | #Nothing to export because each worker retrieve and put data from/on files (or DB) | |
120 | #parallel::clusterExport(cl=cl, varlist=c("nothing","to","export"), envir=environment()) | |
6ecf5c2d | 121 | #TODO: be careful of writing to a new temp file, then flush initial one, then re-use it... |
1c6f223e BA |
122 | res_tasks = parallel::parSapply(cl_tasks, 1:ntasks, function() { |
123 | cl_clust = parallel::makeCluster(ncores_clust) | |
124 | repeat | |
cea14f3a | 125 | { |
1c6f223e BA |
126 | #while there are jobs to do |
127 | #(i.e. size of tmp "file" is greater than ntasks * nb_series_per_chunk) | |
128 | nb_workers = nb_curves %/% nb_series_per_chunk | |
129 | indices = list() | |
130 | #indices[[i]] == (start_index,number_of_elements) | |
131 | for (i in 1:nb_workers) | |
132 | indices[[i]] = c(nb_series_per_chunk*(i-1)+1, nb_series_per_chunk) | |
133 | remainder = nb_curves %% nb_series_per_chunk | |
134 | if (remainder >= min_series_per_chunk) | |
135 | { | |
136 | nb_workers = nb_workers + 1 | |
137 | indices[[nb_workers]] = c(nb_curves-remainder+1, nb_curves) | |
138 | } else if (remainder > 0) | |
139 | { | |
140 | #spread the load among other workers | |
141 | #... | |
142 | } | |
143 | res_clust = parallel::parSapply(cl, indices, processChunk, K, WER=="mix") | |
144 | #C) flush tmp file (current parallel processes will write in it) | |
cea14f3a | 145 | } |
1c6f223e BA |
146 | parallel:stopCluster(cl_clust) |
147 | }) | |
148 | parallel::stopCluster(cl_tasks) | |
3d061515 | 149 | |
8e6accca | 150 | #3) readTmp last results, apply PAM on it, and return medoids + identifiers |
cea14f3a BA |
151 | final_coeffs = readTmp(1, nb_series_per_chunk) |
152 | if (nrow(final_coeffs) == K) | |
153 | { | |
154 | return ( list( medoids=coeffsToCurves(final_coeffs[,2:ncol(final_coeffs)]), | |
155 | ids=final_coeffs[,1] ) ) | |
156 | } | |
157 | pam_output = getClusters(as.matrix(final_coeffs[,2:ncol(final_coeffs)]), K) | |
3465b246 | 158 | medoids = coeffsToCurves(pam_output$medoids, wf) |
cea14f3a | 159 | ids = final_coeffs[,1] [pam_output$ranks] |
ac1d4231 | 160 | |
8e6accca BA |
161 | #4) apply stage 2 (in parallel ? inside task 2) ?) |
162 | if (WER == "end") | |
163 | { | |
164 | #from center curves, apply stage 2... | |
3465b246 | 165 | #TODO: |
8e6accca | 166 | } |
3465b246 BA |
167 | |
168 | return (list(medoids=medoids, ids=ids)) | |
ac1d4231 | 169 | } |
cea14f3a | 170 | |
3465b246 | 171 | processChunk = function(indice, K, WER) |
cea14f3a BA |
172 | { |
173 | #1) retrieve data | |
3465b246 | 174 | coeffs = readTmp(indice[1], indice[2]) |
cea14f3a | 175 | #2) cluster |
3465b246 | 176 | cl = getClusters(as.matrix(coeffs[,2:ncol(coeffs)]), K) |
cea14f3a | 177 | #3) WER (optional) |
3465b246 | 178 | #TODO: |
cea14f3a | 179 | } |
3465b246 BA |
180 | |
181 | #TODO: difficulté : retrouver courbe à partir de l'identifiant (DB ok mais le reste ?) | |
182 | #aussi : que passe-t-on aux noeuds ? curvesToCoeffs en // ? | |
183 | #enfin : WER ?! |