Commit | Line | Data |
---|---|---|
ff5df8e3 BA |
1 | { |
2 | "cells": [ | |
3 | { | |
4 | "cell_type": "markdown", | |
5 | "metadata": {}, | |
6 | "source": [ | |
7 | "\n", | |
8 | "\n", | |
9 | "<h2>Introduction</h2>\n", | |
10 | "\n", | |
11 | "J'ai fait quelques essais dans différentes configurations pour la méthode \"Neighbors\"\n", | |
12 | "(la seule dont on a parlé).<br>Il semble que le mieux soit\n", | |
13 | "\n", | |
14 | " * simtype=\"exo\" ou \"mix\" : similarités exogènes avec/sans endogènes (fenêtre optimisée par VC)\n", | |
15 | " * same_season=FALSE : les indices pour la validation croisée ne tiennent pas compte des saisons\n", | |
16 | " * mix_strategy=\"mult\" : on multiplie les poids (au lieu d'en éteindre)\n", | |
17 | "\n", | |
18 | "J'ai systématiquement comparé à une approche naïve : la moyennes des lendemains des jours\n", | |
19 | "\"similaires\" dans tout le passé ; à chaque fois sans prédiction du saut (sauf pour Neighbors :\n", | |
20 | "prédiction basée sur les poids calculés).\n", | |
21 | "\n", | |
22 | "Ensuite j'affiche les erreurs, quelques courbes prévues/mesurées, quelques filaments puis les\n", | |
23 | "histogrammes de quelques poids. Concernant les graphes de filaments, la moitié gauche du graphe\n", | |
24 | "correspond aux jours similaires au jour courant, tandis que la moitié droite affiche les\n", | |
25 | "lendemains : ce sont donc les voisinages tels qu'utilisés dans l'algorithme.\n", | |
26 | "\n" | |
27 | ] | |
28 | }, | |
29 | { | |
30 | "cell_type": "code", | |
31 | "execution_count": null, | |
32 | "metadata": { | |
33 | "collapsed": false | |
34 | }, | |
35 | "outputs": [], | |
36 | "source": [ | |
37 | "library(talweg)\n", | |
38 | "\n", | |
39 | "ts_data = read.csv(system.file(\"extdata\",\"pm10_mesures_H_loc_report.csv\",package=\"talweg\"))\n", | |
40 | "exo_data = read.csv(system.file(\"extdata\",\"meteo_extra_noNAs.csv\",package=\"talweg\"))\n", | |
d4841a3f | 41 | "data = getData(ts_data, exo_data, input_tz = \"Europe/Paris\", working_tz=\"Europe/Paris\", predict_at=7)\n", |
ff5df8e3 BA |
42 | "\n", |
43 | "indices_ch = seq(as.Date(\"2015-01-18\"),as.Date(\"2015-01-24\"),\"days\")\n", | |
44 | "indices_ep = seq(as.Date(\"2015-03-15\"),as.Date(\"2015-03-21\"),\"days\")\n", | |
d4841a3f BA |
45 | "indices_np = seq(as.Date(\"2015-04-26\"),as.Date(\"2015-05-02\"),\"days\")\n", |
46 | "\n", | |
47 | "H = 3 #predict from 2pm to 4pm" | |
ff5df8e3 BA |
48 | ] |
49 | }, | |
50 | { | |
51 | "cell_type": "markdown", | |
52 | "metadata": {}, | |
53 | "source": [ | |
54 | "\n", | |
55 | "\n", | |
56 | "<h2 style=\"color:blue;font-size:2em\">Pollution par chauffage</h2>" | |
57 | ] | |
58 | }, | |
59 | { | |
60 | "cell_type": "code", | |
61 | "execution_count": null, | |
62 | "metadata": { | |
63 | "collapsed": false | |
64 | }, | |
65 | "outputs": [], | |
66 | "source": [ | |
67 | "p_nn_exo = computeForecast(data, indices_ch, \"Neighbors\", \"Neighbors\", simtype=\"exo\", horizon=H)\n", | |
68 | "p_nn_mix = computeForecast(data, indices_ch, \"Neighbors\", \"Neighbors\", simtype=\"mix\", horizon=H)\n", | |
69 | "p_az = computeForecast(data, indices_ch, \"Average\", \"Zero\", horizon=H) #, memory=183)\n", | |
70 | "p_pz = computeForecast(data, indices_ch, \"Persistence\", \"Zero\", horizon=H, same_day=TRUE)" | |
71 | ] | |
72 | }, | |
73 | { | |
74 | "cell_type": "code", | |
75 | "execution_count": null, | |
76 | "metadata": { | |
77 | "collapsed": false | |
78 | }, | |
79 | "outputs": [], | |
80 | "source": [ | |
d4841a3f BA |
81 | "e_nn_exo = computeError(data, p_nn_exo, H)\n", |
82 | "e_nn_mix = computeError(data, p_nn_mix, H)\n", | |
83 | "e_az = computeError(data, p_az, H)\n", | |
84 | "e_pz = computeError(data, p_pz, H)\n", | |
85 | "\n", | |
ff5df8e3 BA |
86 | "options(repr.plot.width=9, repr.plot.height=7)\n", |
87 | "plotError(list(e_nn_mix, e_pz, e_az, e_nn_exo), cols=c(1,2,colors()[258], 4))\n", | |
88 | "\n", | |
89 | "# Noir: neighbors_mix, bleu: neighbors_exo, vert: moyenne, rouge: persistence\n", | |
90 | "\n", | |
91 | "i_np = which.min(e_nn_exo$abs$indices)\n", | |
92 | "i_p = which.max(e_nn_exo$abs$indices)" | |
93 | ] | |
94 | }, | |
95 | { | |
96 | "cell_type": "code", | |
97 | "execution_count": null, | |
98 | "metadata": { | |
99 | "collapsed": false | |
100 | }, | |
101 | "outputs": [], | |
102 | "source": [ | |
103 | "options(repr.plot.width=9, repr.plot.height=4)\n", | |
104 | "par(mfrow=c(1,2))\n", | |
105 | "\n", | |
106 | "plotPredReal(data, p_nn_exo, i_np); title(paste(\"PredReal nn exo day\",i_np))\n", | |
107 | "plotPredReal(data, p_nn_exo, i_p); title(paste(\"PredReal nn exo day\",i_p))\n", | |
108 | "\n", | |
109 | "plotPredReal(data, p_nn_mix, i_np); title(paste(\"PredReal nn mix day\",i_np))\n", | |
110 | "plotPredReal(data, p_nn_mix, i_p); title(paste(\"PredReal nn mix day\",i_p))\n", | |
111 | "\n", | |
112 | "plotPredReal(data, p_az, i_np); title(paste(\"PredReal az day\",i_np))\n", | |
113 | "plotPredReal(data, p_az, i_p); title(paste(\"PredReal az day\",i_p))\n", | |
114 | "\n", | |
115 | "# Bleu: prévue, noir: réalisée" | |
116 | ] | |
117 | }, | |
118 | { | |
119 | "cell_type": "code", | |
120 | "execution_count": null, | |
121 | "metadata": { | |
122 | "collapsed": false | |
123 | }, | |
124 | "outputs": [], | |
125 | "source": [ | |
126 | "par(mfrow=c(1,2))\n", | |
127 | "f_np_exo = computeFilaments(data, p_nn_exo, i_np, plot=TRUE); title(paste(\"Filaments nn exo day\",i_np))\n", | |
128 | "f_p_exo = computeFilaments(data, p_nn_exo, i_p, plot=TRUE); title(paste(\"Filaments nn exo day\",i_p))\n", | |
129 | "\n", | |
130 | "f_np_mix = computeFilaments(data, p_nn_mix, i_np, plot=TRUE); title(paste(\"Filaments nn mix day\",i_np))\n", | |
131 | "f_p_mix = computeFilaments(data, p_nn_mix, i_p, plot=TRUE); title(paste(\"Filaments nn mix day\",i_p))" | |
132 | ] | |
133 | }, | |
134 | { | |
135 | "cell_type": "code", | |
136 | "execution_count": null, | |
137 | "metadata": { | |
138 | "collapsed": false | |
139 | }, | |
140 | "outputs": [], | |
141 | "source": [ | |
142 | "par(mfrow=c(1,2))\n", | |
143 | "plotFilamentsBox(data, f_np_exo); title(paste(\"FilBox nn exo day\",i_np))\n", | |
144 | "plotFilamentsBox(data, f_p_exo); title(paste(\"FilBox nn exo day\",i_p))\n", | |
145 | "\n", | |
146 | "plotFilamentsBox(data, f_np_mix); title(paste(\"FilBox nn mix day\",i_np))\n", | |
147 | "plotFilamentsBox(data, f_p_mix); title(paste(\"FilBox nn mix day\",i_p))" | |
148 | ] | |
149 | }, | |
150 | { | |
151 | "cell_type": "code", | |
152 | "execution_count": null, | |
153 | "metadata": { | |
154 | "collapsed": false | |
155 | }, | |
156 | "outputs": [], | |
157 | "source": [ | |
158 | "par(mfrow=c(1,2))\n", | |
159 | "plotRelVar(data, f_np_exo); title(paste(\"StdDev nn exo day\",i_np))\n", | |
160 | "plotRelVar(data, f_p_exo); title(paste(\"StdDev nn exo day\",i_p))\n", | |
161 | "\n", | |
162 | "plotRelVar(data, f_np_mix); title(paste(\"StdDev nn mix day\",i_np))\n", | |
163 | "plotRelVar(data, f_p_mix); title(paste(\"StdDev nn mix day\",i_p))\n", | |
164 | "\n", | |
165 | "# Variabilité globale en rouge ; sur les 60 voisins (+ lendemains) en noir" | |
166 | ] | |
167 | }, | |
168 | { | |
169 | "cell_type": "code", | |
170 | "execution_count": null, | |
171 | "metadata": { | |
172 | "collapsed": false | |
173 | }, | |
174 | "outputs": [], | |
175 | "source": [ | |
176 | "par(mfrow=c(1,2))\n", | |
177 | "plotSimils(p_nn_exo, i_np); title(paste(\"Weights nn exo day\",i_np))\n", | |
178 | "plotSimils(p_nn_exo, i_p); title(paste(\"Weights nn exo day\",i_p))\n", | |
179 | "\n", | |
180 | "plotSimils(p_nn_mix, i_np); title(paste(\"Weights nn mix day\",i_np))\n", | |
d4841a3f | 181 | "plotSimils(p_nn_mix, i_p); title(paste(\"Weights nn mix day\",i_p))\n", |
ff5df8e3 BA |
182 | "\n", |
183 | "# - pollué à gauche, + pollué à droite" | |
184 | ] | |
185 | }, | |
186 | { | |
187 | "cell_type": "code", | |
188 | "execution_count": null, | |
189 | "metadata": { | |
190 | "collapsed": false | |
191 | }, | |
192 | "outputs": [], | |
193 | "source": [ | |
194 | "# Fenêtres sélectionnées dans ]0,10] / endo à gauche, exo à droite\n", | |
195 | "p_nn_exo$getParams(i_np)$window\n", | |
196 | "p_nn_exo$getParams(i_p)$window\n", | |
197 | "\n", | |
198 | "p_nn_mix$getParams(i_np)$window\n", | |
199 | "p_nn_mix$getParams(i_p)$window" | |
200 | ] | |
201 | }, | |
202 | { | |
203 | "cell_type": "markdown", | |
204 | "metadata": {}, | |
205 | "source": [ | |
206 | "\n", | |
207 | "\n", | |
208 | "<h2 style=\"color:blue;font-size:2em\">Pollution par épandage</h2>" | |
209 | ] | |
210 | }, | |
211 | { | |
212 | "cell_type": "code", | |
213 | "execution_count": null, | |
214 | "metadata": { | |
215 | "collapsed": false | |
216 | }, | |
217 | "outputs": [], | |
218 | "source": [ | |
219 | "p_nn_exo = computeForecast(data, indices_ep, \"Neighbors\", \"Neighbors\", simtype=\"exo\", horizon=H)\n", | |
220 | "p_nn_mix = computeForecast(data, indices_ep, \"Neighbors\", \"Neighbors\", simtype=\"mix\", horizon=H)\n", | |
221 | "p_az = computeForecast(data, indices_ep, \"Average\", \"Zero\", horizon=H) #, memory=183)\n", | |
222 | "p_pz = computeForecast(data, indices_ep, \"Persistence\", \"Zero\", horizon=H, same_day=TRUE)" | |
223 | ] | |
224 | }, | |
225 | { | |
226 | "cell_type": "code", | |
227 | "execution_count": null, | |
228 | "metadata": { | |
229 | "collapsed": false | |
230 | }, | |
231 | "outputs": [], | |
232 | "source": [ | |
d4841a3f BA |
233 | "e_nn_exo = computeError(data, p_nn_exo, H)\n", |
234 | "e_nn_mix = computeError(data, p_nn_mix, H)\n", | |
235 | "e_az = computeError(data, p_az, H)\n", | |
236 | "e_pz = computeError(data, p_pz, H)\n", | |
ff5df8e3 BA |
237 | "options(repr.plot.width=9, repr.plot.height=7)\n", |
238 | "plotError(list(e_nn_mix, e_pz, e_az, e_nn_exo), cols=c(1,2,colors()[258], 4))\n", | |
239 | "\n", | |
240 | "# Noir: neighbors_mix, bleu: neighbors_exo, vert: moyenne, rouge: persistence\n", | |
241 | "\n", | |
242 | "i_np = which.min(e_nn_exo$abs$indices)\n", | |
243 | "i_p = which.max(e_nn_exo$abs$indices)" | |
244 | ] | |
245 | }, | |
246 | { | |
247 | "cell_type": "code", | |
248 | "execution_count": null, | |
249 | "metadata": { | |
250 | "collapsed": false | |
251 | }, | |
252 | "outputs": [], | |
253 | "source": [ | |
254 | "options(repr.plot.width=9, repr.plot.height=4)\n", | |
255 | "par(mfrow=c(1,2))\n", | |
256 | "\n", | |
257 | "plotPredReal(data, p_nn_exo, i_np); title(paste(\"PredReal nn exo day\",i_np))\n", | |
258 | "plotPredReal(data, p_nn_exo, i_p); title(paste(\"PredReal nn exo day\",i_p))\n", | |
259 | "\n", | |
260 | "plotPredReal(data, p_nn_mix, i_np); title(paste(\"PredReal nn mix day\",i_np))\n", | |
261 | "plotPredReal(data, p_nn_mix, i_p); title(paste(\"PredReal nn mix day\",i_p))\n", | |
262 | "\n", | |
263 | "plotPredReal(data, p_az, i_np); title(paste(\"PredReal az day\",i_np))\n", | |
264 | "plotPredReal(data, p_az, i_p); title(paste(\"PredReal az day\",i_p))\n", | |
265 | "\n", | |
266 | "# Bleu: prévue, noir: réalisée" | |
267 | ] | |
268 | }, | |
269 | { | |
270 | "cell_type": "code", | |
271 | "execution_count": null, | |
272 | "metadata": { | |
273 | "collapsed": false | |
274 | }, | |
275 | "outputs": [], | |
276 | "source": [ | |
277 | "par(mfrow=c(1,2))\n", | |
278 | "f_np_exo = computeFilaments(data, p_nn_exo, i_np, plot=TRUE); title(paste(\"Filaments nn exo day\",i_np))\n", | |
279 | "f_p_exo = computeFilaments(data, p_nn_exo, i_p, plot=TRUE); title(paste(\"Filaments nn exo day\",i_p))\n", | |
280 | "\n", | |
281 | "f_np_mix = computeFilaments(data, p_nn_mix, i_np, plot=TRUE); title(paste(\"Filaments nn mix day\",i_np))\n", | |
282 | "f_p_mix = computeFilaments(data, p_nn_mix, i_p, plot=TRUE); title(paste(\"Filaments nn mix day\",i_p))" | |
283 | ] | |
284 | }, | |
285 | { | |
286 | "cell_type": "code", | |
287 | "execution_count": null, | |
288 | "metadata": { | |
289 | "collapsed": false | |
290 | }, | |
291 | "outputs": [], | |
292 | "source": [ | |
293 | "par(mfrow=c(1,2))\n", | |
294 | "plotFilamentsBox(data, f_np_exo); title(paste(\"FilBox nn exo day\",i_np))\n", | |
295 | "plotFilamentsBox(data, f_p_exo); title(paste(\"FilBox nn exo day\",i_p))\n", | |
296 | "\n", | |
297 | "plotFilamentsBox(data, f_np_mix); title(paste(\"FilBox nn mix day\",i_np))\n", | |
298 | "plotFilamentsBox(data, f_p_mix); title(paste(\"FilBox nn mix day\",i_p))" | |
299 | ] | |
300 | }, | |
301 | { | |
302 | "cell_type": "code", | |
303 | "execution_count": null, | |
304 | "metadata": { | |
305 | "collapsed": false | |
306 | }, | |
307 | "outputs": [], | |
308 | "source": [ | |
309 | "par(mfrow=c(1,2))\n", | |
310 | "plotRelVar(data, f_np_exo); title(paste(\"StdDev nn exo day\",i_np))\n", | |
311 | "plotRelVar(data, f_p_exo); title(paste(\"StdDev nn exo day\",i_p))\n", | |
312 | "\n", | |
313 | "plotRelVar(data, f_np_mix); title(paste(\"StdDev nn mix day\",i_np))\n", | |
314 | "plotRelVar(data, f_p_mix); title(paste(\"StdDev nn mix day\",i_p))\n", | |
315 | "\n", | |
316 | "# Variabilité globale en rouge ; sur les 60 voisins (+ lendemains) en noir" | |
317 | ] | |
318 | }, | |
319 | { | |
320 | "cell_type": "code", | |
321 | "execution_count": null, | |
322 | "metadata": { | |
323 | "collapsed": false | |
324 | }, | |
325 | "outputs": [], | |
326 | "source": [ | |
327 | "par(mfrow=c(1,2))\n", | |
328 | "plotSimils(p_nn_exo, i_np); title(paste(\"Weights nn exo day\",i_np))\n", | |
329 | "plotSimils(p_nn_exo, i_p); title(paste(\"Weights nn exo day\",i_p))\n", | |
330 | "\n", | |
331 | "plotSimils(p_nn_mix, i_np); title(paste(\"Weights nn mix day\",i_np))\n", | |
d4841a3f | 332 | "plotSimils(p_nn_mix, i_p); title(paste(\"Weights nn mix day\",i_p))\n", |
ff5df8e3 BA |
333 | "\n", |
334 | "# - pollué à gauche, + pollué à droite" | |
335 | ] | |
336 | }, | |
337 | { | |
338 | "cell_type": "code", | |
339 | "execution_count": null, | |
340 | "metadata": { | |
341 | "collapsed": false | |
342 | }, | |
343 | "outputs": [], | |
344 | "source": [ | |
345 | "# Fenêtres sélectionnées dans ]0,10] / endo à gauche, exo à droite\n", | |
346 | "p_nn_exo$getParams(i_np)$window\n", | |
347 | "p_nn_exo$getParams(i_p)$window\n", | |
348 | "\n", | |
349 | "p_nn_mix$getParams(i_np)$window\n", | |
350 | "p_nn_mix$getParams(i_p)$window" | |
351 | ] | |
352 | }, | |
353 | { | |
354 | "cell_type": "markdown", | |
355 | "metadata": {}, | |
356 | "source": [ | |
357 | "\n", | |
358 | "\n", | |
359 | "<h2 style=\"color:blue;font-size:2em\">Semaine non polluée</h2>" | |
360 | ] | |
361 | }, | |
362 | { | |
363 | "cell_type": "code", | |
364 | "execution_count": null, | |
365 | "metadata": { | |
366 | "collapsed": false | |
367 | }, | |
368 | "outputs": [], | |
369 | "source": [ | |
370 | "p_nn_exo = computeForecast(data, indices_np, \"Neighbors\", \"Neighbors\", simtype=\"exo\", horizon=H)\n", | |
371 | "p_nn_mix = computeForecast(data, indices_np, \"Neighbors\", \"Neighbors\", simtype=\"mix\", horizon=H)\n", | |
372 | "p_az = computeForecast(data, indices_np, \"Average\", \"Zero\", horizon=H) #, memory=183)\n", | |
d4841a3f | 373 | "p_pz = computeForecast(data, indices_np, \"Persistence\", \"Zero\", horizon=H, same_day=FALSE)" |
ff5df8e3 BA |
374 | ] |
375 | }, | |
376 | { | |
377 | "cell_type": "code", | |
378 | "execution_count": null, | |
379 | "metadata": { | |
380 | "collapsed": false | |
381 | }, | |
382 | "outputs": [], | |
383 | "source": [ | |
d4841a3f BA |
384 | "e_nn_exo = computeError(data, p_nn_exo, H)\n", |
385 | "e_nn_mix = computeError(data, p_nn_mix, H)\n", | |
386 | "e_az = computeError(data, p_az, H)\n", | |
387 | "e_pz = computeError(data, p_pz, H)\n", | |
ff5df8e3 BA |
388 | "options(repr.plot.width=9, repr.plot.height=7)\n", |
389 | "plotError(list(e_nn_mix, e_pz, e_az, e_nn_exo), cols=c(1,2,colors()[258], 4))\n", | |
390 | "\n", | |
391 | "# Noir: neighbors_mix, bleu: neighbors_exo, vert: moyenne, rouge: persistence\n", | |
392 | "\n", | |
393 | "i_np = which.min(e_nn_exo$abs$indices)\n", | |
394 | "i_p = which.max(e_nn_exo$abs$indices)" | |
395 | ] | |
396 | }, | |
397 | { | |
398 | "cell_type": "code", | |
399 | "execution_count": null, | |
400 | "metadata": { | |
401 | "collapsed": false | |
402 | }, | |
403 | "outputs": [], | |
404 | "source": [ | |
405 | "options(repr.plot.width=9, repr.plot.height=4)\n", | |
406 | "par(mfrow=c(1,2))\n", | |
407 | "\n", | |
408 | "plotPredReal(data, p_nn_exo, i_np); title(paste(\"PredReal nn exo day\",i_np))\n", | |
409 | "plotPredReal(data, p_nn_exo, i_p); title(paste(\"PredReal nn exo day\",i_p))\n", | |
410 | "\n", | |
411 | "plotPredReal(data, p_nn_mix, i_np); title(paste(\"PredReal nn mix day\",i_np))\n", | |
412 | "plotPredReal(data, p_nn_mix, i_p); title(paste(\"PredReal nn mix day\",i_p))\n", | |
413 | "\n", | |
414 | "plotPredReal(data, p_az, i_np); title(paste(\"PredReal az day\",i_np))\n", | |
415 | "plotPredReal(data, p_az, i_p); title(paste(\"PredReal az day\",i_p))\n", | |
416 | "\n", | |
417 | "# Bleu: prévue, noir: réalisée" | |
418 | ] | |
419 | }, | |
420 | { | |
421 | "cell_type": "code", | |
422 | "execution_count": null, | |
423 | "metadata": { | |
424 | "collapsed": false | |
425 | }, | |
426 | "outputs": [], | |
427 | "source": [ | |
428 | "par(mfrow=c(1,2))\n", | |
429 | "f_np_exo = computeFilaments(data, p_nn_exo, i_np, plot=TRUE); title(paste(\"Filaments nn exo day\",i_np))\n", | |
430 | "f_p_exo = computeFilaments(data, p_nn_exo, i_p, plot=TRUE); title(paste(\"Filaments nn exo day\",i_p))\n", | |
431 | "\n", | |
432 | "f_np_mix = computeFilaments(data, p_nn_mix, i_np, plot=TRUE); title(paste(\"Filaments nn mix day\",i_np))\n", | |
433 | "f_p_mix = computeFilaments(data, p_nn_mix, i_p, plot=TRUE); title(paste(\"Filaments nn mix day\",i_p))" | |
434 | ] | |
435 | }, | |
436 | { | |
437 | "cell_type": "code", | |
438 | "execution_count": null, | |
439 | "metadata": { | |
440 | "collapsed": false | |
441 | }, | |
442 | "outputs": [], | |
443 | "source": [ | |
444 | "par(mfrow=c(1,2))\n", | |
445 | "plotFilamentsBox(data, f_np_exo); title(paste(\"FilBox nn exo day\",i_np))\n", | |
446 | "plotFilamentsBox(data, f_p_exo); title(paste(\"FilBox nn exo day\",i_p))\n", | |
447 | "\n", | |
448 | "plotFilamentsBox(data, f_np_mix); title(paste(\"FilBox nn mix day\",i_np))\n", | |
449 | "plotFilamentsBox(data, f_p_mix); title(paste(\"FilBox nn mix day\",i_p))" | |
450 | ] | |
451 | }, | |
452 | { | |
453 | "cell_type": "code", | |
454 | "execution_count": null, | |
455 | "metadata": { | |
456 | "collapsed": false | |
457 | }, | |
458 | "outputs": [], | |
459 | "source": [ | |
460 | "par(mfrow=c(1,2))\n", | |
461 | "plotRelVar(data, f_np_exo); title(paste(\"StdDev nn exo day\",i_np))\n", | |
462 | "plotRelVar(data, f_p_exo); title(paste(\"StdDev nn exo day\",i_p))\n", | |
463 | "\n", | |
464 | "plotRelVar(data, f_np_mix); title(paste(\"StdDev nn mix day\",i_np))\n", | |
465 | "plotRelVar(data, f_p_mix); title(paste(\"StdDev nn mix day\",i_p))\n", | |
466 | "\n", | |
467 | "# Variabilité globale en rouge ; sur les 60 voisins (+ lendemains) en noir" | |
468 | ] | |
469 | }, | |
470 | { | |
471 | "cell_type": "code", | |
472 | "execution_count": null, | |
473 | "metadata": { | |
474 | "collapsed": false | |
475 | }, | |
476 | "outputs": [], | |
477 | "source": [ | |
478 | "par(mfrow=c(1,2))\n", | |
479 | "plotSimils(p_nn_exo, i_np); title(paste(\"Weights nn exo day\",i_np))\n", | |
480 | "plotSimils(p_nn_exo, i_p); title(paste(\"Weights nn exo day\",i_p))\n", | |
481 | "\n", | |
482 | "plotSimils(p_nn_mix, i_np); title(paste(\"Weights nn mix day\",i_np))\n", | |
d4841a3f | 483 | "plotSimils(p_nn_mix, i_p); title(paste(\"Weights nn mix day\",i_p))\n", |
ff5df8e3 BA |
484 | "\n", |
485 | "# - pollué à gauche, + pollué à droite" | |
486 | ] | |
487 | }, | |
488 | { | |
489 | "cell_type": "code", | |
490 | "execution_count": null, | |
491 | "metadata": { | |
492 | "collapsed": false | |
493 | }, | |
494 | "outputs": [], | |
495 | "source": [ | |
496 | "# Fenêtres sélectionnées dans ]0,10] / endo à gauche, exo à droite\n", | |
497 | "p_nn_exo$getParams(i_np)$window\n", | |
498 | "p_nn_exo$getParams(i_p)$window\n", | |
499 | "\n", | |
500 | "p_nn_mix$getParams(i_np)$window\n", | |
501 | "p_nn_mix$getParams(i_p)$window" | |
502 | ] | |
503 | }, | |
504 | { | |
505 | "cell_type": "markdown", | |
506 | "metadata": {}, | |
507 | "source": [ | |
508 | "\n", | |
509 | "\n", | |
510 | "<h2>Bilan</h2>\n", | |
511 | "\n", | |
512 | "Problème difficile : on ne fait guère mieux qu'une naïve moyenne des lendemains des jours\n", | |
513 | "similaires dans le passé, ce qui n'est pas loin de prédire une série constante égale à la\n", | |
514 | "dernière valeur observée (méthode \"zéro\"). La persistence donne parfois de bons résultats\n", | |
515 | "mais est trop instable (sensibilité à l'argument <code>same_day</code>).\n", | |
516 | "\n", | |
517 | "Comment améliorer la méthode ?" | |
518 | ] | |
519 | } | |
520 | ], | |
521 | "metadata": { | |
522 | "kernelspec": { | |
523 | "display_name": "R", | |
524 | "language": "R", | |
525 | "name": "ir" | |
526 | }, | |
527 | "language_info": { | |
528 | "codemirror_mode": "r", | |
529 | "file_extension": ".r", | |
530 | "mimetype": "text/x-r-source", | |
531 | "name": "R", | |
532 | "pygments_lexer": "r", | |
533 | "version": "3.3.3" | |
534 | } | |
535 | }, | |
536 | "nbformat": 4, | |
537 | "nbformat_minor": 2 | |
538 | } |