Commit | Line | Data |
---|---|---|
25b75559 | 1 | #' Neighbors Forecaster |
3d69ff21 | 2 | #' |
c4c329f6 BA |
3 | #' Predict next serie as a weighted combination of "futures of the past" days, |
4 | #' where days in the past are chosen and weighted according to some similarity measures. | |
c4c329f6 | 5 | #' |
102bcfda BA |
6 | #' The main method is \code{predictShape()}, taking arguments data, today, memory, |
7 | #' horizon respectively for the dataset (object output of \code{getData()}), the current | |
8 | #' index, the data depth (in days) and the number of time steps to forecast. | |
9 | #' In addition, optional arguments can be passed: | |
10 | #' \itemize{ | |
11 | #' \item local : TRUE (default) to constrain neighbors to be "same days within same | |
12 | #' season" | |
13 | #' \item simtype : 'endo' for a similarity based on the series only,<cr> | |
14 | #' 'exo' for a similaruty based on exogenous variables only,<cr> | |
15 | #' 'mix' for the product of 'endo' and 'exo',<cr> | |
16 | #' 'none' (default) to apply a simple average: no computed weights | |
17 | #' \item window : A window for similarities computations; override cross-validation | |
18 | #' window estimation. | |
19 | #' } | |
20 | #' The method is summarized as follows: | |
21 | #' \enumerate{ | |
22 | #' \item Determine N (=20) recent days without missing values, and followed by a | |
23 | #' tomorrow also without missing values. | |
24 | #' \item Optimize the window parameters (if relevant) on the N chosen days. | |
25 | #' \item Considering the optimized window, compute the neighbors (with locality | |
26 | #' constraint or not), compute their similarities -- using a gaussian kernel if | |
27 | #' simtype != "none" -- and average accordingly the "tomorrows of neigbors" to | |
28 | #' obtain the final prediction. | |
29 | #' } | |
c4c329f6 | 30 | #' |
689aa1d3 BA |
31 | #' @usage f <- NeighborsForecaster$new(pjump) |
32 | #' | |
102bcfda | 33 | #' @docType class |
c4c329f6 | 34 | #' @format R6 class, inherits Forecaster |
3ddf1c12 | 35 | #' @aliases F_Neighbors |
546b0cb6 | 36 | #' |
25b75559 | 37 | NeighborsForecaster = R6::R6Class("NeighborsForecaster", |
a66a84b5 | 38 | inherit = Forecaster, |
25b75559 BA |
39 | |
40 | public = list( | |
98e958ca | 41 | predictShape = function(data, today, memory, horizon, ...) |
3d69ff21 BA |
42 | { |
43 | # (re)initialize computed parameters | |
a66a84b5 | 44 | private$.params <- list("weights"=NA, "indices"=NA, "window"=NA) |
3d69ff21 | 45 | |
a5a3a294 BA |
46 | # Do not forecast on days with NAs (TODO: softer condition...) |
47 | if (any(is.na(data$getCenteredSerie(today)))) | |
48 | return (NA) | |
49 | ||
af3b84f4 | 50 | # Determine indices of no-NAs days followed by no-NAs tomorrows |
3ddf1c12 | 51 | fdays = .getNoNA2(data, max(today-memory,1), today-1) |
af3b84f4 | 52 | |
f17665c7 | 53 | # Get optional args |
445e7bbc BA |
54 | local = ifelse(hasArg("local"), list(...)$local, TRUE) #same level + season? |
55 | simtype = ifelse(hasArg("simtype"), list(...)$simtype, "none") #or "endo", or "exo" | |
aa059de7 | 56 | if (hasArg("window")) |
a66a84b5 | 57 | { |
98e958ca | 58 | return ( private$.predictShapeAux(data, |
aa059de7 | 59 | fdays, today, horizon, local, list(...)$window, simtype, TRUE) ) |
a66a84b5 | 60 | } |
3d69ff21 | 61 | |
6774e53d | 62 | # Indices of similar days for cross-validation; TODO: 20 = magic number |
aa059de7 BA |
63 | cv_days = getSimilarDaysIndices(today, data, limit=20, same_season=FALSE, |
64 | days_in=fdays) | |
5e838b3e | 65 | |
445e7bbc | 66 | # Optimize h : h |--> sum of prediction errors on last N "similar" days |
aa059de7 | 67 | errorOnLastNdays = function(window, simtype) |
3d69ff21 BA |
68 | { |
69 | error = 0 | |
70 | nb_jours = 0 | |
5e838b3e | 71 | for (i in seq_along(cv_days)) |
3d69ff21 | 72 | { |
f17665c7 | 73 | # mix_strategy is never used here (simtype != "mix"), therefore left blank |
aa059de7 BA |
74 | prediction = private$.predictShapeAux(data, fdays, cv_days[i], horizon, local, |
75 | window, simtype, FALSE) | |
f17665c7 | 76 | if (!is.na(prediction[1])) |
3d69ff21 BA |
77 | { |
78 | nb_jours = nb_jours + 1 | |
af3b84f4 | 79 | error = error + |
aa059de7 | 80 | mean((data$getSerie(cv_days[i]+1)[1:horizon] - prediction)^2) |
3d69ff21 BA |
81 | } |
82 | } | |
83 | return (error / nb_jours) | |
84 | } | |
85 | ||
445e7bbc | 86 | # TODO: 7 == magic number |
eef54517 | 87 | if (simtype=="endo" || simtype=="mix") |
af3b84f4 | 88 | { |
aa059de7 BA |
89 | best_window_endo = optimize( |
90 | errorOnLastNdays, c(0,7), simtype="endo")$minimum | |
af3b84f4 | 91 | } |
eef54517 | 92 | if (simtype=="exo" || simtype=="mix") |
af3b84f4 | 93 | { |
eef54517 BA |
94 | best_window_exo = optimize( |
95 | errorOnLastNdays, c(0,7), simtype="exo")$minimum | |
3d69ff21 | 96 | } |
eef54517 BA |
97 | |
98 | best_window = | |
99 | if (simtype == "endo") | |
100 | best_window_endo | |
101 | else if (simtype == "exo") | |
102 | best_window_exo | |
103 | else if (simtype == "mix") | |
104 | c(best_window_endo,best_window_exo) | |
105 | else #none: value doesn't matter | |
106 | 1 | |
107 | ||
108 | return(private$.predictShapeAux(data, fdays, today, horizon, local, | |
109 | best_window, simtype, TRUE)) | |
25b75559 BA |
110 | } |
111 | ), | |
112 | private = list( | |
3d69ff21 | 113 | # Precondition: "today" is full (no NAs) |
aa059de7 BA |
114 | .predictShapeAux = function(data, fdays, today, horizon, local, window, simtype, |
115 | final_call) | |
3d69ff21 | 116 | { |
aa059de7 BA |
117 | fdays_cut = fdays[ fdays < today ] |
118 | if (length(fdays_cut) <= 1) | |
3d69ff21 BA |
119 | return (NA) |
120 | ||
aa059de7 BA |
121 | if (local) |
122 | { | |
3ddf1c12 | 123 | # TODO: 60 == magic number |
aa059de7 BA |
124 | fdays = getSimilarDaysIndices(today, data, limit=60, same_season=TRUE, |
125 | days_in=fdays_cut) | |
126 | if (length(fdays) <= 1) | |
127 | return (NA) | |
3ddf1c12 BA |
128 | # TODO: 10, 12 == magic numbers |
129 | fdays = .getConstrainedNeighbs(today,data,fdays,min_neighbs=10,max_neighbs=12) | |
130 | if (length(fdays) == 1) | |
aa059de7 BA |
131 | { |
132 | if (final_call) | |
133 | { | |
134 | private$.params$weights <- 1 | |
135 | private$.params$indices <- fdays | |
136 | private$.params$window <- 1 | |
137 | } | |
2057c793 | 138 | return ( data$getSerie(fdays[1])[1:horizon] ) |
aa059de7 BA |
139 | } |
140 | } | |
141 | else | |
142 | fdays = fdays_cut #no conditioning | |
143 | ||
445e7bbc | 144 | if (simtype == "endo" || simtype == "mix") |
3d69ff21 | 145 | { |
aa059de7 BA |
146 | # Compute endogen similarities using given window |
147 | window_endo = ifelse(simtype=="mix", window[1], window) | |
3d69ff21 BA |
148 | |
149 | # Distances from last observed day to days in the past | |
5e838b3e BA |
150 | serieToday = data$getSerie(today) |
151 | distances2 = sapply(fdays, function(i) { | |
152 | delta = serieToday - data$getSerie(i) | |
153 | mean(delta^2) | |
154 | }) | |
3d69ff21 | 155 | |
3ddf1c12 | 156 | simils_endo <- .computeSimils(distances2, window_endo) |
3d69ff21 BA |
157 | } |
158 | ||
445e7bbc | 159 | if (simtype == "exo" || simtype == "mix") |
3d69ff21 | 160 | { |
aa059de7 | 161 | # Compute exogen similarities using given window |
445e7bbc | 162 | window_exo = ifelse(simtype=="mix", window[2], window) |
3d69ff21 | 163 | |
25b75559 BA |
164 | M = matrix( nrow=1+length(fdays), ncol=1+length(data$getExo(today)) ) |
165 | M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) ) | |
f17665c7 | 166 | for (i in seq_along(fdays)) |
25b75559 | 167 | M[i+1,] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) ) |
3d69ff21 BA |
168 | |
169 | sigma = cov(M) #NOTE: robust covariance is way too slow | |
ee8b1b4e BA |
170 | # TODO: 10 == magic number; more robust way == det, or always ginv() |
171 | sigma_inv = | |
172 | if (length(fdays) > 10) | |
173 | solve(sigma) | |
174 | else | |
175 | MASS::ginv(sigma) | |
3d69ff21 BA |
176 | |
177 | # Distances from last observed day to days in the past | |
5e838b3e BA |
178 | distances2 = sapply(seq_along(fdays), function(i) { |
179 | delta = M[1,] - M[i+1,] | |
180 | delta %*% sigma_inv %*% delta | |
181 | }) | |
3d69ff21 | 182 | |
3ddf1c12 | 183 | simils_exo <- .computeSimils(distances2, window_exo) |
3d69ff21 BA |
184 | } |
185 | ||
3d69ff21 | 186 | similarities = |
f17665c7 | 187 | if (simtype == "exo") |
3d69ff21 | 188 | simils_exo |
f17665c7 BA |
189 | else if (simtype == "endo") |
190 | simils_endo | |
445e7bbc | 191 | else if (simtype == "mix") |
f17665c7 | 192 | simils_endo * simils_exo |
445e7bbc BA |
193 | else #none |
194 | rep(1, length(fdays)) | |
ea5c7e56 | 195 | similarities = similarities / sum(similarities) |
3d69ff21 BA |
196 | |
197 | prediction = rep(0, horizon) | |
a66a84b5 | 198 | for (i in seq_along(fdays)) |
aa059de7 | 199 | prediction = prediction + similarities[i] * data$getSerie(fdays[i]+1)[1:horizon] |
99f83c9a | 200 | |
3d69ff21 BA |
201 | if (final_call) |
202 | { | |
a66a84b5 BA |
203 | private$.params$weights <- similarities |
204 | private$.params$indices <- fdays | |
205 | private$.params$window <- | |
546b0cb6 | 206 | if (simtype=="endo") |
aa059de7 | 207 | window_endo |
546b0cb6 | 208 | else if (simtype=="exo") |
aa059de7 | 209 | window_exo |
eef54517 | 210 | else if (simtype=="mix") |
aa059de7 | 211 | c(window_endo,window_exo) |
eef54517 BA |
212 | else #none |
213 | 1 | |
3d69ff21 | 214 | } |
99f83c9a | 215 | |
3d69ff21 BA |
216 | return (prediction) |
217 | } | |
218 | ) | |
219 | ) | |
3ddf1c12 | 220 | |
689aa1d3 BA |
221 | # getConstrainedNeighbs |
222 | # | |
223 | # Get indices of neighbors of similar pollution level (among same season + day type). | |
224 | # | |
225 | # @param today Index of current day | |
226 | # @param data Object of class Data | |
227 | # @param fdays Current set of "first days" (no-NA pairs) | |
228 | # @param min_neighbs Minimum number of points in a neighborhood | |
229 | # @param max_neighbs Maximum number of points in a neighborhood | |
230 | # | |
3ddf1c12 BA |
231 | .getConstrainedNeighbs = function(today, data, fdays, min_neighbs=10, max_neighbs=12) |
232 | { | |
233 | levelToday = data$getLevel(today) | |
234 | distances = sapply(fdays, function(i) abs(data$getLevel(i)-levelToday)) | |
235 | #TODO: 2, +3 : magic numbers | |
236 | dist_thresh = 2 | |
237 | min_neighbs = min(min_neighbs,length(fdays)) | |
238 | repeat | |
239 | { | |
240 | same_pollution = (distances <= dist_thresh) | |
241 | nb_neighbs = sum(same_pollution) | |
242 | if (nb_neighbs >= min_neighbs) #will eventually happen | |
243 | break | |
244 | dist_thresh = dist_thresh + 3 | |
245 | } | |
246 | fdays = fdays[same_pollution] | |
247 | max_neighbs = 12 | |
248 | if (nb_neighbs > max_neighbs) | |
249 | { | |
250 | # Keep only max_neighbs closest neighbors | |
251 | fdays = fdays[ | |
252 | sort(distances[same_pollution],index.return=TRUE)$ix[1:max_neighbs] ] | |
253 | } | |
c36568fa | 254 | fdays |
3ddf1c12 BA |
255 | } |
256 | ||
689aa1d3 BA |
257 | # compute similarities |
258 | # | |
259 | # Apply the gaussian kernel on computed squared distances. | |
260 | # | |
261 | # @param distances2 Squared distances | |
262 | # @param window Window parameter for the kernel | |
263 | # | |
3ddf1c12 BA |
264 | .computeSimils <- function(distances2, window) |
265 | { | |
266 | sd_dist = sd(distances2) | |
267 | if (sd_dist < .25 * sqrt(.Machine$double.eps)) | |
268 | { | |
269 | # warning("All computed distances are very close: stdev too small") | |
270 | sd_dist = 1 #mostly for tests... FIXME: | |
271 | } | |
272 | exp(-distances2/(sd_dist*window^2)) | |
273 | } |