work on main.R
authorBenjamin Auder <benjamin.auder@somewhere>
Mon, 9 Jan 2017 18:39:39 +0000 (19:39 +0100)
committerBenjamin Auder <benjamin.auder@somewhere>
Mon, 9 Jan 2017 18:39:39 +0000 (19:39 +0100)
code/draft_R_pkg/R/algorithms.R
code/draft_R_pkg/R/main.R

index e27a235..eda05e5 100644 (file)
@@ -1,10 +1,17 @@
-getCoeffs = function(series)
+curvesToCoeffs = function(series)
 {
        #... return wavelets coeffs : compute in parallel !
+       #TODO: always keep ID in first column
+}
+
+coeffsToCurves = function(coeffs)
+{
+       #re-expand on wavelet basis
 }
 
 getClusters = function(data, K)
 {
        pam_output = pam(data, K)
-       return ( list(clusts=pam_output$clustering, medoids=pam_output$medoids) )
+       return ( list( clusts=pam_output$clustering, medoids=pam_output$medoids,
+               ranks=pam_output$id.med ) )
 }
index 6dca708..bb7355b 100644 (file)
@@ -3,7 +3,7 @@
 #' @title Cluster power curves with PAM in parallel
 #'
 #' @description Groups electricity power curves (or any series of similar nature) by applying PAM
-#' algorithm in parallel to chunks of size \code{nbSeriesPerChunk}
+#' algorithm in parallel to chunks of size \code{nb_series_per_chunk}
 #'
 #' @param data Access to the data, which can be of one of the three following types:
 #' \itemize{
@@ -13,7 +13,8 @@
 #'     (start) and number of curves (n); see example in package vignette.
 #' }
 #' @param K Number of clusters
-#' @param nbSeriesPerChunk Number of series in each group
+#' @param nb_series_per_chunk (Maximum) number of series in each group
+#' @param min_series_per_chunk Minimum number of series in each group
 #' @param writeTmp Function to write temporary wavelets coefficients (+ identifiers);
 #'   see defaults in defaults.R
 #' @param readTmp Function to read temporary wavelets coefficients (see defaults.R)
@@ -22,8 +23,8 @@
 #' @param ncores number of parallel processes; if NULL, use parallel::detectCores()
 #'
 #' @return A data.frame of the final medoids curves (identifiers + values)
-epclust = function(data, K, nbSeriesPerChunk, writeTmp=ref_writeTmp, readTmp=ref_readTmp,
-       WER="end", ncores=NULL)
+epclust = function(data, K, nb_series_per_chunk, min_series_per_chunk=10*K,
+       writeTmp=defaultWriteTmp, readTmp=defaultReadTmp, WER="end", ncores=NULL)
 {
        #TODO: setRefClass(...) to avoid copy data:
        #http://stackoverflow.com/questions/2603184/r-pass-by-reference
@@ -34,18 +35,18 @@ epclust = function(data, K, nbSeriesPerChunk, writeTmp=ref_writeTmp, readTmp=ref
                        {
                                if (is.character(data))
                                {
-                                       dataCon = file(data, open="r")
+                                       data_con = file(data, open="r")
                                } else if (!isOpen(data))
                                {
                                        open(data)
-                                       dataCon = data
+                                       data_con = data
                                }
                        },
                        error="data should be a data.frame, a function or a valid connection")
        if (!is.integer(K) || K < 2)
                stop("K should be an integer greater or equal to 2")
-       if (!is.integer(nbSeriesPerChunk) || nbSeriesPerChunk < K)
-               stop("nbSeriesPerChunk should be an integer greater or equal to K")
+       if (!is.integer(nb_series_per_chunk) || nb_series_per_chunk < K)
+               stop("nb_series_per_chunk should be an integer greater or equal to K")
        if (!is.function(writeTmp) || !is.function(readTmp))
                stop("read/writeTmp should be functional (see defaults.R)")
        if (WER!="end" && WER!="mix")
@@ -54,72 +55,86 @@ epclust = function(data, K, nbSeriesPerChunk, writeTmp=ref_writeTmp, readTmp=ref
 
        #1) acquire data (process curves, get as coeffs)
        index = 1
-       nbCurves = 0
+       nb_curves = 0
        repeat
        {
+               coeffs_chunk = NULL
                if (is.data.frame(data))
                {
                        #full data matrix
                        if (index < nrow(data))
                        {
-                               writeTmp( getCoeffs( data[index:(min(index+nbSeriesPerChunk-1,nrow(data))),] ) )
-                       } else
-                       {
-                               break
+                               coeffs_chunk = curvesToCoeffs(
+                                       data[index:(min(index+nb_series_per_chunk-1,nrow(data))),])
                        }
                } else if (is.function(data))
                {
                        #custom user function to retrieve next n curves, probably to read from DB
-                       coeffs_chunk = getCoeffs( data(index, nbSeriesPerChunk) )
-                       if (!is.null(coeffs_chunk))
-                       {
-                               writeTmp(coeffs_chunk)
-                       } else
-                       {
-                               break
-                       }
+                       coeffs_chunk = curvesToCoeffs( data(index, nb_series_per_chunk) )
                } else
                {
                        #incremental connection
                        #TODO: find a better way to parse than using a temp file
-                       ascii_lines = readLines(dataCon, nbSeriesPerChunk)
+                       ascii_lines = readLines(data_con, nb_series_per_chunk)
                        if (length(ascii_lines > 0))
                        {
-                               seriesChunkFile = ".tmp/seriesChunk"
-                               writeLines(ascii_lines, seriesChunkFile)
-                               writeTmp( getCoeffs( read.csv(seriesChunkFile) ) )
-                       } else
-                       {
-                               break
+                               series_chunk_file = ".tmp/series_chunk"
+                               writeLines(ascii_lines, series_chunk_file)
+                               coeffs_chunk = curvesToCoeffs( read.csv(series_chunk_file) )
                        }
                }
-               index = index + nbSeriesPerChunk
+               if (is.null(coeffs_chunk))
+                       break
+               writeTmp(coeffs_chunk)
+               nb_curves = nb_curves + nrow(coeffs_chunk)
+               index = index + nb_series_per_chunk
        }
-       if (exists(dataCon))
-               close(dataCon)
+       if (exists(data_con))
+               close(data_con)
+       if (nb_curves < min_series_per_chunk)
+               stop("Not enough data: less rows than min_series_per_chunk!")
 
+       #2) process coeffs (by nb_series_per_chunk) and cluster them in parallel
        library(parallel)
        ncores = ifelse(is.integer(ncores), ncores, parallel::detectCores())
        cl = parallel::makeCluster(ncores)
        parallel::clusterExport(cl=cl, varlist=c("X", "Y", "K", "p"), envir=environment())
        library(cluster)
-       li = parallel::parLapply(cl, 1:B, )
-
-       #2) process coeffs (by nbSeriesPerChunk) and cluster them in parallel
        #TODO: be careful of writing to a new temp file, then flush initial one, then re-use it...
        repeat
        {
-               completed = rep(FALSE, ............)
-               #while there is jobs to do (i.e. size of tmp "file" is greater than nbSeriesPerChunk),
-               #A) determine which tasks which processor will do (OK)
-               #B) send each (sets of) tasks in parallel
+               #while there is jobs to do (i.e. size of tmp "file" is greater than nb_series_per_chunk)
+               nb_workers = nb_curves %/% nb_series_per_chunk
+               indices = list()
+               #incides[[i]] == (start_index,number_of_elements)
+               for (i in 1:nb_workers)
+                       indices[[i]] = c(nb_series_per_chunk*(i-1)+1, nb_series_per_chunk)
+               remainder = nb_curves %% nb_series_per_chunk
+               if (remainder >= min_series_per_chunk)
+               {
+                       nb_workers = nb_workers + 1
+                       indices[[nb_workers]] = c(nb_curves-remainder+1, nb_curves)
+               } else if (remainder > 0)
+               {
+                       #spread the load among other workers
+                       
+               }
+               li = parallel::parLapply(cl, indices, processChunk, WER=="mix")
                #C) flush tmp file (current parallel processes will write in it)
-               #always check "complete" flag (array, as I did in MPI) to know if "slaves" finished
        }
-pam(x, k)
        parallel::stopCluster(cl)
 
        #3) readTmp last results, apply PAM on it, and return medoids + identifiers
+       final_coeffs = readTmp(1, nb_series_per_chunk)
+       if (nrow(final_coeffs) == K)
+       {
+               return ( list( medoids=coeffsToCurves(final_coeffs[,2:ncol(final_coeffs)]),
+                       ids=final_coeffs[,1] ) )
+       }
+       pam_output = getClusters(as.matrix(final_coeffs[,2:ncol(final_coeffs)]), K)
+       medoids = coeffsToCurves(pam_output$medoids)
+       ids = final_coeffs[,1] [pam_output$ranks]
+       return (list(medoids=medoids, ids=ids))
 
        #4) apply stage 2 (in parallel ? inside task 2) ?)
        if (WER == "end")
@@ -127,3 +142,10 @@ pam(x, k)
                #from center curves, apply stage 2...
        }
 }
+
+processChunk = function(indice, WER)
+{
+       #1) retrieve data
+       #2) cluster
+       #3) WER (optional)
+}