weights <- optargs$weights
if (is.null(weights))
- weights <- rep(1, K)
+ weights <- rep(1, 3)
# Build and return optimization algorithm object
methods::new("OptimParams", "li"=link, "M1"=as.double(M[[1]]),
M <- computeMoments(fargs$X, fargs$Y)
fargs$optargs$M <- M
mu <- computeMu(fargs$X, fargs$Y, fargs$optargs)
- res2 <- NULL
+ op <- optimParams(K,fargs$optargs$link,fargs$optargs)
+ x_init <- list(p=rep(1/K,K-1), beta=mu, b=rep(0,K))
tryCatch({
- op <- optimParams(K,fargs$optargs$link,fargs$optargs)
- x_init <- list(p=rep(1/K,K-1), beta=mu, b=rep(0,K))
- res2 <- do.call(rbind, op$run(x_init))
+ res2 <- do.call(rbind, op$run(x_init))
}, error = function(e) {
res2 <- NA
})
fargs$X = io$X
fargs$Y = io$Y
fargs$optargs$K = ncol(fargs$beta)
- fargs$optargs$M = computeMoments(io$X,io$Y)
fargs
}, N=N, ncores=ncores, verbose=TRUE)
p <- c(p, 1-sum(p))
}
mr <- optimBeta(N, n, K, p, beta, b, link, weights, ncores)
-mr_params <- list("N"=N, "n"=n, "K"=K, "d"=d, "link"=link,
+mr_params <- list("N"=N, "nc"=ncores, "n"=n, "K"=K, "d"=d, "link"=link,
"p"=c(p,1-sum(p)), "beta"=beta, "b"=b, "weights"=weights)
save("mr", "mr_params", file=paste("res_",n,"_",d,"_",link,"_",strw,".RData",sep=""))
library(morpheus)
+testMultistart <- function(N, n, K, p, beta, b, link, nstart, ncores)
+{
+ ms <- multiRun(
+ list(n=n,p=p,beta=beta,b=b,optargs=list(K=K,link=link,nstart=nstart)),
+ list(
+ function(fargs) {
+ # 1 start
+ library(morpheus)
+ K <- fargs$optargs$K
+ op <- optimParams(K, fargs$optargs$link, fargs$optargs)
+ x_init <- list(p=rep(1/K,K-1), beta=fargs$mu, b=rep(0,K))
+ res <- NULL
+ tryCatch({
+ res <- do.call(rbind, op$run(x_init))
+ }, error = function(e) {
+ res <- NA
+ })
+ res
+ },
+ function(fargs) {
+ # B starts
+ library(morpheus)
+ K <- fargs$optargs$K
+ op <- optimParams(K, fargs$optargs$link, fargs$optargs)
+ best_val <- Inf
+ best_par <- list()
+ for (i in 1:fargs$optargs$nstart)
+ {
+ #x_init <- list(p=rep(1/K,K-1), beta=i*fargs$mu, b=rep(0,K))
+ M <- matrix(rnorm(d*K), nrow=d, ncol=K)
+ M <- t(t(M) / sqrt(colSums(M^2)))
+ x_init <- list(p=rep(1/K,K-1), beta=M, b=rep(0,K))
+ tryCatch({
+ par <- op$run(x_init)
+ }, error = function(e) {
+ par <- NA
+ })
+ if (!is.na(par[0]))
+ {
+ val <- op$f( op$linArgs(par) )
+ if (val < best_val)
+ {
+ best_par <- par
+ best_val <- val
+ }
+ }
+ }
+ # Bet that at least one run succeded:
+ do.call(rbind,best_par)
+ }
+ ),
+ prepareArgs = function(fargs, index) {
+ library(morpheus)
+ io = generateSampleIO(fargs$n, fargs$p, fargs$beta, fargs$b, fargs$optargs$link)
+ fargs$optargs$M <- computeMoments(io$X, io$Y)
+ mu <- computeMu(io$X, io$Y, fargs$optargs)
+ fargs$mu <- mu
+ fargs
+ }, N=N, ncores=ncores, verbose=TRUE)
+ for (i in 1:2)
+ ms[[i]] <- alignMatrices(ms[[i]], ref=rbind(p,beta,b), ls_mode="exact")
+ ms
+}
+
#model = binomial
K <- 2
p <- .5
b <- c(-.2, .5)
# Default values:
link = "logit"
-N <- 100
+N <- 10
d <- 2
n <- 1e4
ncores <- 1
matrix( c(1,2,-1,0,3,4,-1,-3,0,2, 2,-3,0,1,0,-1,-4,3,2,0), ncol=K ) ) #d=10
beta <- betas[[ ifelse( d==2, 1, ifelse(d==5,2,3) ) ]]
-ms <- multiRun(
- list(n=n,p=p,beta=beta,b=b,optargs=list(K=K,link=link,nstart=nstart)), list(
- function(fargs) {
- # 1 start
- library(morpheus)
- K <- fargs$optargs$K
- op <- optimParams(K, fargs$optargs$link, fargs$optargs)
- x_init <- list(p=rep(1/K,K-1), beta=fargs$mu, b=rep(0,K))
- do.call(rbind,op$run(x_init))
- },
- function(fargs) {
- # B starts
- library(morpheus)
- K <- fargs$optargs$K
- op <- optimParams(K, fargs$optargs$link, fargs$optargs)
- best_val <- Inf
- best_par <- list()
- for (i in 1:fargs$optargs$nstart)
- {
- x_init <- list(p=rep(1/K,K-1), beta=i*fargs$mu, b=rep(0,K))
- par <- op$run(x_init)
- val <- op$f( op$linArgs(par) )
- if (val < best_val)
- {
- best_par <- par
- best_val <- val
- }
- }
- do.call(rbind,best_par)
- }),
- prepareArgs = function(fargs) {
- library(morpheus)
- io = generateSampleIO(fargs$n, fargs$p, fargs$beta, fargs$b, fargs$optargs$link)
- fargs$optargs$M <- computeMoments(io$X, io$Y)
- mu <- computeMu(io$X, io$Y, fargs$optargs)
- fargs$mu <- mu
- }, N=N, ncores=ncores, verbose=TRUE)
-for (i in 1:2)
- ms[[i]] <- alignMatrices(ms[[i]], ref=rbind(p,beta,b), ls_mode="exact")
-
-ms_params <- list("N"=N, "nc"=ncores, "n"=n, "K"=K, "link"=link,
- "p"=p, "beta"=beta, "b"=b, "nstart"=nstart)
+ms <- testMultistart(N, n, K, p, beta, b, link, nstart, ncores)
+ms_params <- list("N"=N, "nc"=ncores, "n"=n, "K"=K, "d"=d, "link"=link,
+ "p"=c(p,1-sum(p)), "beta"=beta, "b"=b, "nstart"=nstart)
-save(ms, ms_params, file="multistart.RData")
+save("ms", "ms_params", file="multistart.RData")
+++ /dev/null
-library(morpheus)
-morph <- function(fargs) {
- K <- fargs$optargs$K
- M <- computeMoments(fargs$X, fargs$Y)
- fargs$optargs$M <- M
- mu <- computeMu(fargs$X, fargs$Y, fargs$optargs)
- res2 <- NULL
- tryCatch({
- op <- optimParams(K,link,fargs$optargs)
- x_init <- list(p=rep(1/K,K-1), beta=mu, b=rep(0,K))
- res2 <- do.call(rbind, op$run(x_init))
- }, error = function(e) {
- res2 <- NA
- })
- res2
-}
-
-#model = binomial; default values:
-link = "probit"
-N <- 10
-d <- 2
-n <- 1e4
-ncores <- 1
-
-if (d == 2) {
- K <- 2
- p <- .5
- b <- c(-.2, .5)
- beta <- matrix( c(1,-2, 3,1), ncol=K )
-} else if (d == 5) {
- K <- 2
- p <- .5
- b <- c(-.2, .5)
- beta <- matrix( c(1,2,-1,0,3, 2,-3,0,1,0), ncol=K )
-} else if (d == 10) {
- K <- 3
- p <- c(.3, .3)
- b <- c(-.2, 0, .5)
- beta <- matrix( c(1,2,-1,0,3,4,-1,-3,0,2, 2,-3,0,1,0,-1,-4,3,2,0, -1,1,3,-1,0,0,2,0,1,-2), ncol=K )
-} else if (d == 20) {
- K <- 3
- p <- c(.3, .3)
- b <- c(-.2, 0, .5)
- beta <- matrix( c(1,2,-1,0,3,4,-1,-3,0,2,2,-3,0,1,0,-1,-4,3,2,0, -1,1,3,-1,0,0,2,0,1,-2,1,2,-1,0,3,4,-1,-3,0,2, 2,-3,0,1,0,-1,-4,3,2,0,1,1,2,2,-2,-2,3,1,0,0), ncol=K )
-}
-
-fargs = list(n=n, p=p, beta=beta, b=b)
-fargs$optargs = list(link=link)
-
-io = generateSampleIO(fargs$n, fargs$p, fargs$beta, fargs$b, fargs$optargs$link)
-fargs$X = io$X
-fargs$Y = io$Y
-fargs$optargs$K = ncol(fargs$beta)
-fargs$optargs$M = computeMoments(io$X,io$Y)
-
-res2 <- morph(fargs)
-
-save("res2", file="test.RData")
+++ /dev/null
-#!/bin/bash
-
-# arg --vanilla maybe possible on cluster
-for d in 2 5; do
- for link in "logit" "probit"; do
- R --slave --args N=10 n=1e3 nc=3 d=$d link=$link <accuracy.R >out$d$link 2>&1
- done
-done
-
-#for d in 2 5; do
-# for n in 5000 10000 100000 500000 1000000; do
-# for link in "logit" "probit"; do
-# R --slave --args N=1000 n=$n nc=64 d=$d link=$link <accuracy.R >out_$n$link$d 2>&1
-# done
-# done
-#done