Add report generator + first draft of report.gj
authorBenjamin Auder <benjamin.auder@somewhere>
Thu, 16 Mar 2017 11:03:48 +0000 (12:03 +0100)
committerBenjamin Auder <benjamin.auder@somewhere>
Thu, 16 Mar 2017 11:03:48 +0000 (12:03 +0100)
reports/ipynb_generator.py [new file with mode: 0644]
reports/report.gj [new file with mode: 0644]
reports/report_2017-03-01.13h.ipynb

diff --git a/reports/ipynb_generator.py b/reports/ipynb_generator.py
new file mode 100644 (file)
index 0000000..a89ec40
--- /dev/null
@@ -0,0 +1,153 @@
+import sys, os, re, logging
+
+# Languages mapping as used by markdown/pandoc
+shortname2language = dict(
+    c='C',
+    cpp='Cpp',
+    f='Fortran',
+    html='HTML',
+    js='JavaScript',
+    r='R',
+    rb='Ruby',
+    pl='Perl',
+    py='Python',
+    sh='Bash',
+    tex='Tex',
+    )
+
+def read(text, argv=sys.argv[2:]):
+    lines = text.splitlines()
+    # First read all include statements
+    for i in range(len(lines)):
+        if lines[i].startswith('#include "'):
+            filename = lines[i].split('"')[1]
+            with open(filename, 'r') as f:
+                include_text = f.read()
+            lines[i] = include_text
+    text = '\n'.join(lines)
+    logging.info('******* text after include:\n{}'.format(text))
+
+    # Run Mako
+    mako_kwargs = {}
+    for arg in argv:
+        key, value = arg.split('=')
+        mako_kwargs[key] = value
+
+    try:
+        import mako
+        has_mako = True
+    except ImportError:
+        print('Cannot import mako - mako is not run')
+        has_mako = False
+
+    if has_mako:
+        from mako.template import Template
+        from mako.lookup import TemplateLookup
+        lookup = TemplateLookup(directories=[os.curdir])
+        text = text.encode('utf-8')
+        temp = Template(text=text, lookup=lookup, strict_undefined=True)
+        logging.info('******* mako_kwargs: {}'.format(str(mako_kwargs)))
+        text = temp.render(**mako_kwargs)
+
+    logging.info('******* text after mako:\n{}'.format(text))
+
+    # Parse the cells
+    lines = text.splitlines()
+    cells = []
+    inside = None    # indicates which type of cell we are inside
+    fullname = None  # full language name in code cells
+    for line in lines:
+        if line.startswith('-----'):
+            # New cell, what type?
+            m = re.search(r'-----([a-z0-9-]+)?', line)
+            if m:
+                shortname = m.group(1)
+                if shortname:
+                    # Check if code is to be typeset as static
+                    # Markdown code (e.g., shortname=py-t)
+                    logging.info('******* found shortname {}'
+                        .format(shortname))
+                    astext = shortname[-2:] == '-t'
+                    logging.info('******* cell: astext={} shortname={}'
+                        .format(astext, shortname))
+                    if astext:
+                        # Markdown
+                        shortname = shortname[:-2]
+                        inside = 'markdown'
+                        cells.append(['markdown', 'code', ['\n']])
+                        cells[-1][2].append('```%s\n' % fullname)
+                    else:
+                        # Code cell
+                        if shortname in shortname2language:
+                            fullname = shortname2language[shortname]
+                        inside = 'codecell'
+                        cells.append(['codecell', fullname, []])
+                else:
+                    logging.info('******* cell: markdown')
+                    # Markdown cell
+                    inside = 'markdown'
+                    cells.append(['markdown', 'text', ['\n']])
+            else:
+                raise SyntaxError('Wrong syntax of cell delimiter:\n{}'
+                    .format(repr(line)))
+        else:
+            # Ordinary line in a cell
+            if inside in ('markdown', 'codecell'):
+                cells[-1][2].append(line)
+            else:
+                raise SyntaxError('line\n {}\nhas no beginning cell delimiter'
+                    .format(line))
+    # Merge the lines in each cell to a string
+    for i in range(len(cells)):
+        if cells[i][0] == 'markdown' and cells[i][1] == 'code':
+            # Add an ending ``` of code
+            cells[i][2].append('```\n')
+        cells[i][2] = '\n'.join(cells[i][2])
+    # TODO: optional logging
+    import pprint
+    logging.info('******* cell data structure:\b%s' % pprint.pformat(cells))
+    return cells
+
+def write(cells):
+    """Turn cells list into valid IPython notebook code."""
+    # Use Jupyter nbformat functionality for writing the notebook
+
+    from nbformat.v4 import (
+        new_code_cell, new_markdown_cell, new_notebook, writes)
+    nb_cells = []
+
+    for cell_tp, language, block in cells:
+        if cell_tp == 'markdown':
+            nb_cells.append(
+                new_markdown_cell(source=block))
+        elif cell_tp == 'codecell':
+            nb_cells.append(new_code_cell(source=block))
+
+    nb = new_notebook(cells=nb_cells)
+    filestr = writes(nb)
+    return filestr
+
+def driver():
+    """Compile a document and its variables."""
+    try:
+        filename = sys.argv[1]
+        with open(filename, 'r') as f:
+            text = f.read()
+    except (IndexError, IOError) as e:
+        print('Usage: %s filename' % (sys.argv[0]))
+        print(e)
+        sys.exit(1)
+    cells = read(text, argv=sys.argv[2:])
+    filestr = write(cells)
+    # Assuming file extension .gj (generate Jupyter); TODO: less strict
+    filename = filename[:-3] + '.ipynb'
+    with open(filename, 'w') as f:
+        f.write(filestr)
+
+if __name__ == '__main__':
+    logfile = 'tmp.log'
+    if os.path.isfile:
+        os.remove(logfile)
+    logging.basicConfig(format='%(message)s', level=logging.DEBUG,
+                        filename=logfile)
+    driver()
diff --git a/reports/report.gj b/reports/report.gj
new file mode 100644 (file)
index 0000000..a9f10d0
--- /dev/null
@@ -0,0 +1,132 @@
+-----
+
+## Introduction
+
+J'ai fait quelques essais dans différentes configurations pour la méthode "Neighbors"
+(la seule dont on a parlé).<br>Il semble que le mieux soit
+
+ * simtype="exo" ou "mix" : similarités exogènes avec/sans endogènes (fenêtre optimisée par VC)
+ * same_season=FALSE : les indices pour la validation croisée ne tiennent pas compte des saisons
+ * mix_strategy="mult" : on multiplie les poids (au lieu d'en éteindre)
+
+J'ai systématiquement comparé à une approche naïve : la moyennes des lendemains des jours
+"similaires" dans tout le passé ; à chaque fois sans prédiction du saut (sauf pour Neighbors :
+prédiction basée sur les poids calculés).
+
+Ensuite j'affiche les erreurs, quelques courbes prévues/mesurées, quelques filaments puis les
+histogrammes de quelques poids. Concernant les graphes de filaments, la moitié gauche du graphe
+correspond aux jours similaires au jour courant, tandis que la moitié droite affiche les
+lendemains : ce sont donc les voisinages tels qu'utilisés dans l'algorithme.
+
+<%
+list_titles = ['Pollution par chauffage', 'Pollution par épandage', 'Semaine non polluée']
+list_indices = ['indices_ch', 'indices_ep', 'indices_np']
+%>
+
+-----r
+
+library(talweg)
+
+ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc_report.csv",package="talweg"))
+exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv",package="talweg"))
+data = getData(ts_data, exo_data, input_tz = "Europe/Paris", working_tz="Europe/Paris", predict_at=13)
+
+indices_ch = seq(as.Date("2015-01-18"),as.Date("2015-01-24"),"days")
+indices_ep = seq(as.Date("2015-03-15"),as.Date("2015-03-21"),"days")
+indices_np = seq(as.Date("2015-04-26"),as.Date("2015-05-02"),"days")
+
+% for loop in range(3):
+
+-----
+
+<h2 style="color:blue;font-size:2em">${list_titles[loop]}</h2>
+
+-----r
+p_nn_exo = computeForecast(data, ${list_indices[loop]}, "Neighbors", "Neighbors", simtype="exo", horizon=H)
+p_nn_mix = computeForecast(data, ${list_indices[loop]}, "Neighbors", "Neighbors", simtype="mix", horizon=H)
+p_az = computeForecast(data, ${list_indices[loop]}, "Average", "Zero", horizon=H) #, memory=183)
+p_pz = computeForecast(data, ${list_indices[loop]}, "Persistence", "Zero", horizon=H, same_day=TRUE)
+
+-----r
+e_nn_exo = computeError(data, p_nn_exo)
+e_nn_mix = computeError(data, p_nn_mix)
+e_az = computeError(data, p_az)
+e_pz = computeError(data, p_pz)
+options(repr.plot.width=9, repr.plot.height=7)
+plotError(list(e_nn_mix, e_pz, e_az, e_nn_exo), cols=c(1,2,colors()[258], 4))
+
+#Noir: neighbors_mix, bleu: neighbors_exo, vert: moyenne, rouge: persistence
+
+i_np = which.min(e_nn_exo$abs$indices)
+i_p = which.max(e_nn_exo$abs$indices)
+
+-----r
+options(repr.plot.width=9, repr.plot.height=4)
+par(mfrow=c(1,2))
+
+plotPredReal(data, p_nn_exo, i_np); title(paste("PredReal nn exo day",i_np))
+plotPredReal(data, p_nn_exo, i_p); title(paste("PredReal nn exo day",i_p))
+
+plotPredReal(data, p_nn_mix, i_np); title(paste("PredReal nn mix day",i_np))
+plotPredReal(data, p_nn_mix, i_p); title(paste("PredReal nn mix day",i_p))
+
+plotPredReal(data, p_az, i_np); title(paste("PredReal az day",i_np))
+plotPredReal(data, p_az, i_p); title(paste("PredReal az day",i_p))
+
+#Bleu: prévue, noir: réalisée
+
+-----r
+par(mfrow=c(1,2))
+f_np_exo = computeFilaments(data, p_nn_exo, i_np, plot=TRUE); title(paste("Filaments nn exo day",i_np))
+f_p_exo = computeFilaments(data, p_nn_exo, i_p, plot=TRUE); title(paste("Filaments nn exo day",i_p))
+
+f_np_mix = computeFilaments(data, p_nn_mix, i_np, plot=TRUE); title(paste("Filaments nn mix day",i_np))
+f_p_mix = computeFilaments(data, p_nn_mix, i_p, plot=TRUE); title(paste("Filaments nn mix day",i_p))
+
+-----r
+par(mfrow=c(1,2))
+plotFilamentsBox(data, f_np_exo); title(paste("FilBox nn exo day",i_np))
+plotFilamentsBox(data, f_p_exo); title(paste("FilBox nn exo day",i_p))
+
+plotFilamentsBox(data, f_np_mix); title(paste("FilBox nn mix day",i_np))
+plotFilamentsBox(data, f_p_mix); title(paste("FilBox nn mix day",i_p))
+
+-----r
+par(mfrow=c(1,2))
+plotRelVar(data, f_np_exo); title(paste("StdDev nn exo day",i_np))
+plotRelVar(data, f_p_exo); title(paste("StdDev nn exo day",i_p))
+
+plotRelVar(data, f_np_mix); title(paste("StdDev nn mix day",i_np))
+plotRelVar(data, f_p_mix); title(paste("StdDev nn mix day",i_p))
+
+#Variabilité globale en rouge ; sur les 60 voisins (+ lendemains) en noir
+
+-----r
+par(mfrow=c(1,2))
+plotSimils(p_nn_exo, i_np); title(paste("Weights nn exo day",i_np))
+plotSimils(p_nn_exo, i_p); title(paste("Weights nn exo day",i_p))
+
+plotSimils(p_nn_mix, i_np); title(paste("Weights nn mix day",i_np))
+plotSimils(p_nn_mix, i_p); title(paste("Weights nn mix day",i_p)
+
+#- pollué à gauche, + pollué à droite
+
+-----r
+#Fenêtres sélectionnées dans ]0,10] / endo à gauche, exo à droite
+p_nn_exo$getParams(i_np)$window
+p_nn_exo$getParams(i_p)$window
+
+p_nn_mix$getParams(i_np)$window
+p_nn_mix$getParams(i_p)$window
+
+% endfor
+
+-----
+## Bilan
+
+Problème difficile : on ne fait guère mieux qu'une naïve moyenne des lendemains des jours
+similaires dans le passé, ce qui n'est pas loin de prédire une série constante égale à la
+dernière valeur observée (méthode "zéro"). La persistence donne parfois de bons résultats
+mais est trop instable (sensibilité à l'argument <code>same_day</code>).
+
+Comment améliorer la méthode ?
index 945583a..c7c6a49 100644 (file)
    "mimetype": "text/x-r-source",
    "name": "R",
    "pygments_lexer": "r",
-   "version": "3.3.2"
+   "version": "3.3.3"
   }
  },
  "nbformat": 4,