a few fixes
[talweg.git] / pkg / R / plot.R
CommitLineData
98e958ca 1#' Plot curves
e030a6e3 2#'
102bcfda 3#' Plot a range of curves in data.
e030a6e3 4#'
102bcfda 5#' @inheritParams computeError
e030a6e3
BA
6#' @param indices Range of indices (integers or dates)
7#'
8#' @export
1e20780e 9plotCurves <- function(data, indices=seq_len(data$getSize()))
e030a6e3 10{
98e958ca 11 series = data$getSeries(indices)
a5a3a294 12 yrange = quantile(series, probs=c(0.025,0.975), na.rm=TRUE)
e030a6e3
BA
13 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
14 for (i in seq_along(indices))
15 {
98e958ca 16 plot(series[,i], type="l", ylim=yrange,
4e25de2c 17 xlab=ifelse(i==1,"Time (hours)",""), ylab=ifelse(i==1,"PM10",""))
1e20780e 18 if (i < length(indices))
e030a6e3
BA
19 par(new=TRUE)
20 }
21}
22
af3b84f4 23#' Plot error
3d69ff21 24#'
102bcfda 25#' Draw error graphs, potentially from several runs of \code{computeForecast()}.
3d69ff21 26#'
102bcfda 27#' @param err Error as returned by \code{computeError()}
09cf9c19 28#' @param cols Colors for each error (default: 1,2,3,...)
3d69ff21 29#'
98e958ca 30#' @seealso \code{\link{plotCurves}}, \code{\link{plotPredReal}},
72b9c501
BA
31#' \code{\link{plotSimils}}, \code{\link{plotFbox}}, \code{\link{computeFilaments}},
32#' \code{\link{plotFilamentsBox}}, \code{\link{plotRelVar}}
3d69ff21
BA
33#'
34#' @export
09cf9c19 35plotError <- function(err, cols=seq_along(err))
3d69ff21 36{
09cf9c19
BA
37 if (!is.null(err$abs))
38 err = list(err)
4e95ec8f 39 par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2)
3d69ff21 40 L = length(err)
98e958ca 41 yrange = range( sapply(1:L, function(i) ( err[[i]]$abs$day ) ), na.rm=TRUE )
3d69ff21
BA
42 for (i in seq_len(L))
43 {
4e25de2c
BA
44 plot(err[[i]]$abs$day, type="l", xlab=ifelse(i==1,"Time (hours)",""),
45 ylab=ifelse(i==1,"Mean |y - y_hat|",""), ylim=yrange, col=cols[i])
3d69ff21
BA
46 if (i < L)
47 par(new=TRUE)
48 }
98e958ca 49 yrange = range( sapply(1:L, function(i) ( err[[i]]$abs$indices ) ), na.rm=TRUE )
3d69ff21
BA
50 for (i in seq_len(L))
51 {
4e25de2c
BA
52 plot(err[[i]]$abs$indices, type="l", xlab=ifelse(i==1,"Time (days)",""),
53 ylab=ifelse(i==1,"Mean |y - y_hat|",""), ylim=yrange, col=cols[i])
3d69ff21
BA
54 if (i < L)
55 par(new=TRUE)
56 }
98e958ca 57 yrange = range( sapply(1:L, function(i) ( err[[i]]$MAPE$day ) ), na.rm=TRUE )
3d69ff21
BA
58 for (i in seq_len(L))
59 {
4e25de2c
BA
60 plot(err[[i]]$MAPE$day, type="l", xlab=ifelse(i==1,"Time (hours)",""),
61 ylab=ifelse(i==1,"Mean MAPE",""), ylim=yrange, col=cols[i])
3d69ff21
BA
62 if (i < L)
63 par(new=TRUE)
64 }
98e958ca 65 yrange = range( sapply(1:L, function(i) ( err[[i]]$MAPE$indices ) ), na.rm=TRUE )
3d69ff21
BA
66 for (i in seq_len(L))
67 {
4e25de2c
BA
68 plot(err[[i]]$MAPE$indices, type="l", xlab=ifelse(i==1,"Time (days)",""),
69 ylab=ifelse(i==1,"Mean MAPE",""), ylim=yrange, col=cols[i])
3d69ff21
BA
70 if (i < L)
71 par(new=TRUE)
72 }
73}
74
98e958ca
BA
75#' Plot measured / predicted
76#'
102bcfda 77#' Plot measured curve (in black) and predicted curve (in blue).
98e958ca 78#'
102bcfda 79#' @inheritParams computeError
98e958ca
BA
80#' @param index Index in forecasts (integer or date)
81#'
82#' @export
83plotPredReal <- function(data, pred, index)
84{
72b9c501 85 prediction = pred$getForecast(index)
d2ab47a7 86 measure = data$getSerie( pred$getIndexInData(index) )[length(prediction)]
98e958ca
BA
87 yrange = range(measure, prediction)
88 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=3)
4e25de2c 89 plot(measure, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10")
98e958ca
BA
90 par(new=TRUE)
91 plot(prediction, type="l", col="#0000FF", ylim=yrange, xlab="", ylab="")
92}
93
94#' Plot similarities
95#'
102bcfda 96#' Plot histogram of similarities (weights), for 'Neighbors' method.
98e958ca 97#'
102bcfda 98#' @inheritParams computeError
98e958ca
BA
99#' @param index Index in forecasts (integer or date)
100#'
101#' @export
102plotSimils <- function(pred, index)
103{
104 weights = pred$getParams(index)$weights
105 if (is.null(weights))
106 stop("plotSimils only works on 'Neighbors' forecasts")
107 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
4e25de2c 108 hist(pred$getParams(index)$weights, nclass=20, main="", xlab="Weight", ylab="Count")
98e958ca
BA
109}
110
af3b84f4 111#' Functional boxplot
3d69ff21 112#'
102bcfda 113#' Draw the functional boxplot on the left, and bivariate plot on the right.
3d69ff21 114#'
102bcfda
BA
115#' @inheritParams computeError
116#' @inheritParams plotCurves
3d69ff21
BA
117#'
118#' @export
98e958ca 119plotFbox <- function(data, indices=seq_len(data$getSize()))
3d69ff21
BA
120{
121 if (!requireNamespace("rainbow", quietly=TRUE))
122 stop("Functional boxplot requires the rainbow package")
123
98e958ca
BA
124 series_matrix = data$getSeries(indices)
125 # Remove series with NAs
af3b84f4
BA
126 no_NAs_indices = sapply( 1:ncol(series_matrix),
127 function(i) all(!is.na(series_matrix[,i])) )
99f83c9a 128 series_matrix = series_matrix[,no_NAs_indices]
3d69ff21
BA
129
130 series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix)
fa8078f9 131 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
4e25de2c 132 rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10",
3d69ff21 133 plotlegend=FALSE, lwd=2)
98e958ca
BA
134 rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE)
135}
136
137#' Compute filaments
138#'
102bcfda
BA
139#' Obtain similar days in the past, and (optionally) plot them -- as black as distances
140#' are small.
98e958ca 141#'
102bcfda 142#' @inheritParams computeError
8f84543c 143#' @param index Index in forecast (integer or date)
98e958ca
BA
144#' @param limit Number of neighbors to consider
145#' @param plot Should the result be plotted?
d2ab47a7 146#' @param predict_from First prediction instant
98e958ca
BA
147#'
148#' @return A list with
149#' \itemize{
150#' \item index : index of the current serie ('today')
151#' \item neighb_indices : indices of its neighbors
152#' \item colors : colors of neighbors curves (shades of gray)
153#' }
154#'
155#' @export
d2ab47a7 156computeFilaments <- function(data, pred, index, predict_from, limit=60, plot=TRUE)
98e958ca 157{
d2ab47a7 158 if (is.null(pred$getParams(index)$weights) || is.na(pred$getParams(index)$weights[1]))
98e958ca
BA
159 stop("computeFilaments requires a serie without NAs")
160
98e958ca 161 # Compute colors for each neighbor (from darkest to lightest)
8f84543c
BA
162 sorted_dists = sort(-log(pred$getParams(index)$weights), index.return=TRUE)
163 nn = min(limit, length(sorted_dists$x))
164 min_dist = min(sorted_dists$x[1:nn])
165 max_dist = max(sorted_dists$x[1:nn])
166 color_values = floor(19.5*(sorted_dists$x[1:nn]-min_dist)/(max_dist-min_dist)) + 1
98e958ca
BA
167 colors = gray.colors(20,0.1,0.9)[color_values] #TODO: 20 == magic number
168
169 if (plot)
170 {
171 # Complete series with (past and present) tomorrows
d2ab47a7
BA
172 ref_serie = c( data$getCenteredSerie( pred$getIndexInData(index)-1 ),
173 data$getCenteredSerie( pred$getIndexInData(index) ) )
8f84543c
BA
174 centered_series = rbind(
175 data$getCenteredSeries( pred$getParams(index)$indices ),
176 data$getCenteredSeries( pred$getParams(index)$indices+1 ) )
72b9c501
BA
177 yrange = range( ref_serie,
178 quantile(centered_series, probs=c(0.025,0.975), na.rm=TRUE) )
98e958ca
BA
179 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2)
180 for (i in nn:1)
181 {
8f84543c 182 plot(centered_series[,sorted_dists$ix[i]], ylim=yrange, type="l", col=colors[i],
4e25de2c 183 xlab=ifelse(i==1,"Time (hours)",""), ylab=ifelse(i==1,"Centered PM10",""))
98e958ca
BA
184 par(new=TRUE)
185 }
186 # Also plot ref curve, in red
187 plot(ref_serie, ylim=yrange, type="l", col="#FF0000", xlab="", ylab="")
d2ab47a7 188 abline(v=24+predict_from-0.5, lty=2, col=colors()[56], lwd=1)
98e958ca
BA
189 }
190
8f84543c
BA
191 list(
192 "index"=pred$getIndexInData(index),
193 "neighb_indices"=pred$getParams(index)$indices[sorted_dists$ix[1:nn]],
194 "colors"=colors)
fa8078f9
BA
195}
196
af3b84f4 197#' Functional boxplot on filaments
fa8078f9 198#'
102bcfda 199#' Draw the functional boxplot on filaments obtained by \code{computeFilaments()}.
fa8078f9 200#'
102bcfda 201#' @inheritParams computeError
98e958ca 202#' @param fil Output of \code{computeFilaments}
fa8078f9
BA
203#'
204#' @export
d2ab47a7 205plotFilamentsBox = function(data, fil, predict_from)
fa8078f9 206{
98e958ca
BA
207 if (!requireNamespace("rainbow", quietly=TRUE))
208 stop("Functional boxplot requires the rainbow package")
209
210 series_matrix = rbind(
211 data$getSeries(fil$neighb_indices), data$getSeries(fil$neighb_indices+1) )
212 series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix)
213 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
4e25de2c 214 rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10",
98e958ca
BA
215 plotlegend=FALSE, lwd=2)
216
72b9c501 217 # "Magic": http://stackoverflow.com/questions/13842560/get-xlim-from-a-plot-in-r
fa8078f9
BA
218 usr <- par("usr")
219 yr <- (usr[4] - usr[3]) / 27
98e958ca 220 par(new=TRUE)
a5a3a294 221 plot(c(data$getSerie(fil$index),data$getSerie(fil$index+1)), type="l", lwd=2, lty=2,
fa8078f9 222 ylim=c(usr[3] + yr, usr[4] - yr), xlab="", ylab="")
d2ab47a7 223 abline(v=24+predict_from-0.5, lty=2, col=colors()[56])
3d69ff21 224}
16b1c049 225
af3b84f4 226#' Plot relative conditional variability / absolute variability
16b1c049 227#'
af3b84f4 228#' Draw the relative conditional variability / absolute variability based on filaments
102bcfda 229#' obtained by \code{computeFilaments()}.
16b1c049 230#'
102bcfda
BA
231#' @inheritParams computeError
232#' @inheritParams plotFilamentsBox
16b1c049
BA
233#'
234#' @export
d2ab47a7 235plotRelVar = function(data, fil, predict_from)
16b1c049 236{
98e958ca
BA
237 ref_var = c( apply(data$getSeries(fil$neighb_indices),1,sd),
238 apply(data$getSeries(fil$neighb_indices+1),1,sd) )
41196789 239 fdays = .getNoNA2(data, 1, fil$index-1)
72b9c501
BA
240 global_var = c(
241 apply(data$getSeries(fdays),1,sd),
242 apply(data$getSeries(fdays+1),1,sd) )
16b1c049 243
af3b84f4 244 yrange = range(ref_var, global_var)
16b1c049 245 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
af3b84f4 246 plot(ref_var, type="l", col=1, lwd=3, ylim=yrange,
4e25de2c 247 xlab="Time (hours)", ylab="Standard deviation")
16b1c049 248 par(new=TRUE)
98e958ca 249 plot(global_var, type="l", col=2, lwd=3, ylim=yrange, xlab="", ylab="")
d2ab47a7 250 abline(v=24+predict_from-0.5, lty=2, col=colors()[56])
16b1c049 251}