| 1 | #' Two-stage clustering, within one task (see \code{claws()}) |
| 2 | #' |
| 3 | #' \code{clusteringTask1()} runs one full stage-1 task, which consists in iterated |
| 4 | #' clustering on nb_curves / ntasks energy contributions, computed through |
| 5 | #' discrete wavelets coefficients. |
| 6 | #' \code{clusteringTask2()} runs a full stage-2 task, which consists in WER distances |
| 7 | #' computations between medoids (indices) output from stage 1, before applying |
| 8 | #' the second clustering algorithm on the distances matrix. |
| 9 | #' |
| 10 | #' @param getContribs Function to retrieve contributions from initial series indices: |
| 11 | #' \code{getContribs(indices)} outputs a contributions matrix, in columns |
| 12 | #' @inheritParams claws |
| 13 | #' @inheritParams computeSynchrones |
| 14 | #' @inheritParams computeWerDists |
| 15 | #' |
| 16 | #' @return The indices of the computed (resp. K1 and K2) medoids. |
| 17 | #' |
| 18 | #' @name clustering |
| 19 | #' @rdname clustering |
| 20 | #' @aliases clusteringTask1 clusteringTask2 |
| 21 | NULL |
| 22 | |
| 23 | #' @rdname clustering |
| 24 | #' @export |
| 25 | clusteringTask1 <- function(indices, getContribs, K1, algoClust1, nb_items_clust, |
| 26 | ncores_clust=3, verbose=FALSE) |
| 27 | { |
| 28 | if (verbose) |
| 29 | cat(paste("*** Clustering task 1 on ",length(indices)," series [start]\n", sep="")) |
| 30 | |
| 31 | if (length(indices) <= K1) |
| 32 | return (indices) |
| 33 | |
| 34 | parll <- (ncores_clust > 1) |
| 35 | if (parll) |
| 36 | { |
| 37 | # outfile=="" to see stderr/stdout on terminal |
| 38 | cl <- |
| 39 | if (verbose) |
| 40 | parallel::makeCluster(ncores_clust, outfile = "") |
| 41 | else |
| 42 | parallel::makeCluster(ncores_clust) |
| 43 | parallel::clusterExport(cl, c("getContribs","K1","verbose"), envir=environment()) |
| 44 | } |
| 45 | # Iterate clustering algorithm 1 until K1 medoids are found |
| 46 | while (length(indices) > K1) |
| 47 | { |
| 48 | # Balance tasks by splitting the indices set - as evenly as possible |
| 49 | indices_workers <- .splitIndices(indices, nb_items_clust, min_size=K1+1) |
| 50 | indices <- |
| 51 | if (parll) |
| 52 | { |
| 53 | unlist( parallel::parLapply(cl, indices_workers, function(inds) { |
| 54 | require("epclust", quietly=TRUE) |
| 55 | inds[ algoClust1(getContribs(inds), K1) ] |
| 56 | }) ) |
| 57 | } |
| 58 | else |
| 59 | { |
| 60 | unlist( lapply(indices_workers, function(inds) |
| 61 | inds[ algoClust1(getContribs(inds), K1) ] |
| 62 | ) ) |
| 63 | } |
| 64 | if (verbose) |
| 65 | { |
| 66 | cat(paste("*** Clustering task 1 on ",length(indices)," medoids [iter]\n", sep="")) |
| 67 | } |
| 68 | } |
| 69 | if (parll) |
| 70 | parallel::stopCluster(cl) |
| 71 | |
| 72 | indices #medoids |
| 73 | } |
| 74 | |
| 75 | #' @rdname clustering |
| 76 | #' @export |
| 77 | clusteringTask2 <- function(indices, getSeries, K2, algoClust2, nb_series_per_chunk, |
| 78 | smooth_lvl, nvoice, nbytes, endian, ncores_clust=3, verbose=FALSE) |
| 79 | { |
| 80 | if (verbose) |
| 81 | cat(paste("*** Clustering task 2 on ",length(indices)," medoids\n", sep="")) |
| 82 | |
| 83 | if (length(indices) <= K2) |
| 84 | return (indices) |
| 85 | |
| 86 | # A) Compute the WER distances (Wavelets Extended coefficient of deteRmination) |
| 87 | distances <- computeWerDists(indices, getSeries, nb_series_per_chunk, |
| 88 | smooth_lvl, nvoice, nbytes, endian, ncores_clust, verbose) |
| 89 | |
| 90 | # B) Apply clustering algorithm 2 on the WER distances matrix |
| 91 | if (verbose) |
| 92 | cat(paste("*** algoClust2() on ",nrow(distances)," items\n", sep="")) |
| 93 | indices[ algoClust2(distances,K2) ] |
| 94 | } |