| 1 | #' selectVariables |
| 2 | #' |
| 3 | #' It is a function which construct, for a given lambda, the sets of relevant variables. |
| 4 | #' |
| 5 | #' @param phiInit an initial estimator for phi (size: p*m*k) |
| 6 | #' @param rhoInit an initial estimator for rho (size: m*m*k) |
| 7 | #' @param piInit an initial estimator for pi (size : k) |
| 8 | #' @param gamInit an initial estimator for gamma |
| 9 | #' @param mini minimum number of iterations in EM algorithm |
| 10 | #' @param maxi maximum number of iterations in EM algorithm |
| 11 | #' @param gamma power in the penalty |
| 12 | #' @param glambda grid of regularization parameters |
| 13 | #' @param X matrix of regressors |
| 14 | #' @param Y matrix of responses |
| 15 | #' @param thres threshold to consider a coefficient to be equal to 0 |
| 16 | #' @param tau threshold to say that EM algorithm has converged |
| 17 | #' |
| 18 | #' @return a list of outputs, for each lambda in grid: selected,Rho,Pi |
| 19 | #' |
| 20 | #' @examples TODO |
| 21 | #' |
| 22 | #' @export |
| 23 | #' |
| 24 | selectVariables = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda, |
| 25 | X,Y,thresh,tau, ncores=1) #ncores==1 ==> no // |
| 26 | { |
| 27 | if (ncores > 1) |
| 28 | { |
| 29 | cl = parallel::makeCluster(ncores) |
| 30 | parallel::clusterExport(cl=cl, |
| 31 | varlist=c("phiInit","rhoInit","gamInit","mini","maxi","glambda","X","Y","thresh","tau"), |
| 32 | envir=environment()) |
| 33 | } |
| 34 | |
| 35 | # Calcul pour un lambda |
| 36 | computeCoefs <-function(lambda) |
| 37 | { |
| 38 | params = EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau) |
| 39 | |
| 40 | p = dim(phiInit)[1] |
| 41 | m = dim(phiInit)[2] |
| 42 | |
| 43 | #selectedVariables: list where element j contains vector of selected variables in [1,m] |
| 44 | selectedVariables = sapply(1:p, function(j) { ## je me suis permise de changer le type, |
| 45 | ##une liste de liste ca devenait compliqué je trouve pour choper ce qui nous intéresse |
| 46 | #from boolean matrix mxk of selected variables obtain the corresponding boolean m-vector, |
| 47 | #and finally return the corresponding indices |
| 48 | #seq_len(m)[ apply( abs(params$phi[j,,]) > thresh, 1, any ) ] |
| 49 | c(seq_len(m)[ apply( abs(params$phi[j,,]) > thresh, 1, any ) ], |
| 50 | rep(0, m-length(seq_len(m)[ apply( abs(params$phi[j,,]) > thresh, 1, any ) ] ) )) |
| 51 | }) |
| 52 | |
| 53 | list("selected"=selectedVariables,"Rho"=params$rho,"Pi"=params$pi) |
| 54 | } |
| 55 | |
| 56 | # Pour chaque lambda de la grille, on calcule les coefficients |
| 57 | out <- |
| 58 | if (ncores > 1){ |
| 59 | parLapply(cl, seq_along(glambda, computeCoefs))} |
| 60 | else lapply(seq_along(glambda), computeCoefs) |
| 61 | if (ncores > 1){ |
| 62 | parallel::stopCluster(cl)} |
| 63 | out |
| 64 | } |